988 resultados para Biodiesel purification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An inducible membrane-bound l-4-hydroxymandelate oxidase (decarboxylating) from Pseudomonas convexa has been solubilized and partially purified. It catalyzes the conversion of l-4-hydroxymandelic acid to 4-hydroxybenzaldehyde in a single step with the stoichiometric consumption of O2 and liberation of CO2. The enzyme is optimally active at pH 6.6 and at 55 oC. It requires FAD and Mn2+ for its activity. The membrane-bound enzyme is more stable than the solubilized and purified enzyme. After solubilization it gradually loses its activity when kept at 5 oC which can be fully reactivated by freezing and thawing. The Km values for DL-4-hydroxymandelate and FAD are 0.44 mM and 0.038 mM respectively. The enzyme is highly specific for DL-4-hydroxymandelic acid. DL-3,4-Dihydroxymandelic acid competitively inhibited the enzyme reaction. From the Dixon plot the Ki for DL-3,4-dihydroxymandelic acid was calculated to be 1.8 × 10−4 M. The enzyme is completely inactivated by thiol compounds and not affected by thiol inhibitors. The enzyme is also inhibited by denaturing agents, heavy metal ions and by chelating agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenylalanine ammonia-lyase (EC 4.3.1.5) was purified to homogeneity from the acetone-dried powders of the mycelial felts of the plant pathogenic fungus Rhizoctonia solani. 2. A useful modification in protamine sulphate treatment to get substantial purification of the enzyme in a single-step is described. 3. The purified enzyme shows bisubstrate activity towards L-phenylalanine and L-tyrosine. 4. It is sensitive to carbonyl reagents and the inhibition is not reversed by gel filtration. 5. The molecular weight of the enzyme as determined by Sephadex G-200 chromatography and sucrose-density-gradient centrifugation is around 330000. 6. The enzyme is made up of two pairs of unidentical subunits, with a molecular weight of 70000 (alpha) and 90000 (beta) respectively. 7. Studies on initial velocity versus substrate concentration have shown significant deviations from Michaelis-Menten kinetics. 8. The double-reciprocal plots are biphasic (concave downwards) and Hofstee plots show a curvilinear pattern. 9. The apparent Km value increases from 0.18 mM to as high as 5.0 mM with the increase in the concentration of the substrate and during this process the Vmax, increases by 2-2.5-fold. 10. The value of Hill coefficient is 0.5. 11. Steady-state rates of phenylalanine ammonia-lyase reaction in the presence of inhibitors like D-phenylalanine, cinnamic, p-coumaric, caffeic, dihydrocaffeic and phenylpyruvic acid have shown that only one molecule of each type of inhibitor binds to a molecule of the enzyme. These observations suggest the involvement of negative homotropic interactions in phenylalanine ammonia-lyase. 12. The enzyme could not be desensitized by treatment with HgCl2, p-chloromercuribenzoic acid or by repeated freezing and thawing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxidase from Mycobacterium tuberculosis H37Rv was purified to homogeneity. The homogeneous protein exhibits catalase and Y (Youatt's)-enzyme activities in addition to peroxidase activity. Further confirmation that the three activities are due to a single enzyme was accomplished by other criteria, such as differential thermal inactivation, sensitivity to different inhibitors, and co-purification. The Y enzyme (peroxidase) was separated from NADase (NAD+ glycohydrolase) inhibitor by gel filtration on Sephadex G-200. The molecular weights of peroxidase and NADase inhibitor, as determined by gel filtration, are 240000 and 98000 respectively. The Y enzyme shows two Km values for both isoniazid (isonicotinic acid hydrazide) and NAD at low and high concentrations. Analysis of the data by Hill plots revealed that the enzyme has one binding site at lower substrate concentrations and more than one at higher substrate concentration. The enzyme contains 6g-atoms of iron/mol. Highly purified preparations of peroxidases from different sources catalyse the Y-enzyme reaction, suggesting that the nature of the reaction may be a peroxidatic oxidation of isoniazid. Moreover, the Y-enzyme reaction is enhanced by O2. Isoniazid-resistant mutants do not exhibit Y-enzyme, peroxidase or catalase activities, and do not take up isoniazid. The Y-enzyme reaction is therefore implicated in the uptake of the drug.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An inducible Image -mandelate-4-hydroxylase has been partially purified from crude extracts of Pseudomonas convexa. This enzyme catalyzed the hydroxylation of Image -mandelic acid to 4-hydroxymandelic acid. It required tetrahydropteridine, NADPH, Fe2+, and O2 for its activity. The approximate molecular weight of the enzyme was assessed as 91,000 by gel filtration on Sephadex G-150. The enzyme was optimally active at pH 5.4 and 38 °C. A classical Michaelis-Menten kinetic pattern was observed with Image -mandelate, NADPH, and ferrous sulfate and Km values for these substrates were found to be 1 × 10−4, 1.9 × 10−4, and 4.7 × 10−5 Image , respectively. The enzyme is very specific for Image -mandelate as substrate. Thiol inhibitors inhibited the enzyme reaction, indicating that the sulfhydryl groups may be essential for the enzyme action. Treatment of the partially purified enzyme with denaturing agents inactivated the enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An inducible benzoate-4-hydroxylase has been partially purified from crude extracts of the mycelial felts of Aspergillus niger. This enzyme catalyzes the transformation of benzoate to p-hydroxybenzoate with equimolar consumption of NADPH and O2. It requires tetrahydropteridine as a prosthetic group. The optimum activity was found at pH 6.2 with a Km value at 30°C of 1.6 · 10−4 M for NADPH and 1.3 · 10−4 M for benzoate. Fe2+ (iron) is required for the enzyme activity. The enzyme is stabilized by the inclusion of benzoate, EDTA and glutathione in the extracting buffer. The enzyme is specific for benzoate as substrate. Sulfhydryl group(s) are essential for enzyme activity as indicated by p-chloromercuri-benzoate and N-ethylmaleimide inactivation. Benzoate-4-hydroxylase activity is decreased in the mycelial felts of Aspergillus niger grown in the presence of higher concentrations of benzoate. Maximum activity of the enzyme was observed at 36 h after inoculation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An NADP+-specific isocitrate dehydrogenase has been purified and characterized from Rhizobium meliloti. The enzyme showed Mn++ or Mg++ requirement. The apparent Km values were 2.00×10-5 m and 1.51×10-5 m for dl-isocitrate and NADP+, respectively. The enzyme was inhibited by ATP, to a lesser extent by ADP and AMP. agr-Ketoglutarate also inhibited the enzyme activity. Oxalacetate and glyoxylate together inhibited the enzyme activity. The inhibition was competitive. Studies with thiol inhibitors suggested that the enzyme contained a sulfhydryl group at or near the active site. The enzyme has an approximate molecular weight of 60 000. Fluorescence studies suggested that the enzyme contained tryptophan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obtaining pure mRNA preparations from prokaryotes has been difficult, if not impossible, for want of a poly(A) tail on these messages, We have used poly(A) polymerase from yeast to effect specific polyadenylation of Escherichia coli polysomal mRNA in the presence of magnesium and manganese, The polyadenylated total mRNA, which could be subsequently purified by binding to and elution from oligo(dT) beads, had a size range of 0.4-4.0 kb. We have used hybridization to a specific plasmid-encoded gene to further confirm that the polyadenylated species represented mRNA, Withdrawal of Mg2+ from the polyadenylation reaction rRNA despite the presence of Mn2+, indicating the vital role of Mg2+ in maintaining the native structure of polysomes, Complete dissociation of polysomes into ribosomal subunits resulted in quantitative polyadenylation of both 16S and 23S rRNA species, Chromosomal lacZ gene-derived messages were quantitatively recovered in the oligo(dT)-bound fraction, as demonstrated by RT-PCR analysis, Potential advantages that accrue from the availability of pure total mRNA from prokaryotes is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrate assimilation in many plants, algae, yeasts and bacteria is mediated by two enzymes, nitrate reductase (EC 1.6.6.2) and nitrite reductase (EC 1.7.7.1). They catalyse the stepwise reduction of nitrate to nitrite and nitrite to ammonia respectively. The nitrite reductase from an industrially important yeast, Candida utilis, has been purified to homogeneity. Purified nitrite reductase is a heterodimer and the molecular masses of the two subunits are 58 and 66 kDa. The native enzyme exhibits a molecular mass of 126 kDa as analysed by gel filtration. The identify of the two subunits of nitrite reductase was confirmed by immunoblotting using antibody for Cucurbita pepo leaf nitrite reductase. The presence of two different sized transcripts coding for the two subunits was confirmed by (a) in vitro translation of mRNA from nitrate-induced C. utilis followed by immunoprecipitation of the in vitro translated products with heterologous nitrite reductase antibody and (b) Northern-blot analysis. The 66 kDa subunit is acidic in nature which is probably due to its phosphorylated status. The enzyme is stable over a range of temperatures. Both subunits can catalyse nitrite reduction, and the reconstituted enzyme, at a higher protein concentration, shows an activity similar to that of the purified enzyme. Each of these subunits has been shown to contain a few unique peptides in addition to a large number of common peptides. Reduced Methyl Viologen has been found to be as effective an electron donor as NADPH in the catalytic process, a phenomenon not commonly seen for nitrite reductases from other systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A soil micro-organism identified as Alcaligenes eutrophus capable of utilizing nerolidol, a sesquiterpene alcohol as the sole source of carbon, contains an inducible NAD(P)(+)-linked secondary-alcohol dehydrogenase (SADH), The enzyme was purified 252-fold from crude cell-free extract by a combination of salt precipitation, ion-exchange and affinity-matrix chromatography, Native and SDS/PAGE PAGE of the purified enzyme showed a single protein band and the enzyme appears to be a homotetramer having an apparent molecular mass of 139 kDa comprising four identical subunits of 38.5 kDa, The isoelectric point (pi) of SADH was determined to be 6.2, Depending on pH of the reaction media, the enzyme carried out both oxidation and reductions of various terpenoids and steroids, At pH 5.5, the enzyme catalysed the stereospecific reduction of prochiral ketones to optically active (S)-alcohols and the oxidation reaction was predominated over the former at pH 9.5, NADP(+) and NADPH were respectively preferred over NAD(+) and NADH for oxidation and reduction reactions, The K-m values for testosterone, NADP(+) and NAD(+) were 11.8, 55.6, and 122 mu M respectively, Neither enzyme was significantly inhibited by metal-binding agents, but some thiol-blocking compounds inhibited it, SADH tolerates moderate concentrations of water-miscible organic solvents such as ethanol, methanol, acetone and dioxan, Some of the properties of this enzyme were found to be significantly different from those thus far described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protocatechuate-3,4-dioxygenase from the leaves of Tecoma stans was purified to near homogeneity and some of its properties studied. It was optimally active at pH 5.2 and at 40°C. Its molecular weight of approx. 150 000 was determined by gel filtration on a Sephadex G-150 column. The Km value for protocatechuate was found to be 330 μM and for ferrous sulfate, 40 μM. The enzyme was highly specific for protocatechuate and did not attack any of the substrate analogues. None of the substrate analogues tested inhibited the enzyme activity. Sulfhydryl reagents inhibited the enzyme activity which could be partially reversed by sulfhydryl compounds. The dioxygenase activity was not associated with polyphenol oxidase activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alcaligenes eutrophus utilizing nerolidol, a sesquiterpene alcohol,as the sole source of carbon contains an inducible NAD(P)+-linked secondary alcohol dehydrogenase (SADH). The enzyme was purified to homogeneity by a combination of salt precipitation, ion exchange and affinity matri chromatographies. The apparent molecular mass of the enzyme was estimated to be 139 KDa with four identical subunits of 38.5 KDa. The enzyme carried out both oxidation and reduction reactions. At pH 5.5, enzyme catalyzed the stereospecific reduction of prochiral ketones to secondary alcohols. The pH optimum for the oxidation reaction was 9.5. NADP+ and NADPH were respectively preferred over NAD+ and NADH for oxidation and reduction reactions. Some of the properties of this enzyme were found to be significantly different from those thus far described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vitro transcription analysis is important to understand the mechanism of transcription. Various assays for the analysis of initiation, elongation and termination form the basis for better understanding of the process. Purified RNA polymerase (RNAP) with high specific activity is necessary to carry out variety of these specific reactions. The RNAP purified from Mycobacterium smegmatis from exponential phase showed low promoter specificity in promoter-polymerase interaction studies. This is due to the presence of a large number of sigma factors during exponential phase and under-representation of sigma(A) required for house-keeping transcription. We describe an in vivo reconstitution of RNAP holoenzyme with sigma(A) and its purification, which resulted in holoenzyme with stoichiometric sigma(A) content. The reconstituted holoenzyme showed enhanced promoter-specific binding and promoter-specific-transcription activity compared to the enzyme isolated using standard procedure. Such in vivo reconstitution of stoichiometric holoenzyme could facilitate promoter-specific transcription assays, especially in organisms which encode a large number of sigma factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1,3-Propanediol dehydrogenase is an enzyme that catalyzes the oxidation of 1,3-propanediol to 3-hydroxypropanal with the simultaneous reduction of NADP(+) to NADPH. SeMet-labelled 1,3-propanediol dehydrogenase protein from the hyperthermophilic bacterium Aquifex aeolicus VF5 was overexpressed in Escherichia coli and purified to homogeneity. Crystals of this protein were grown from an acidic buffer with ammonium sulfate as the precipitant. Single-wavelength data were collected at the selenium peak to a resolution of 2.4 angstrom. The crystal belonged to space group P3(2), with unit-cell parameters a = b = 142.19, c = 123.34 angstrom. The structure contained two dimers in the asymmetric unit and was solved by the MR-SAD approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the morphology, microstructure and surface composition of Diesel engine exhaust particles. The state of agglomeration, the primary particle size and the fractal dimension of exhaust particles from petroleum Diesel (petrodiesel) and biodiesel blends from microalgae, cotton seed and waste cooking oil were investigated by means of high resolution transmission electron microscopy. With primary particle diameters between 12-19 nm, biodiesel blend primary particles are found to be smaller than petrodiesel ones (21±2 nm). Also it was found that soot agglomerates from biodiesels are more compact and spherical, as their fractal dimensions are higher, e.g. 2.2±0.1 for 50% algae biodiesel compared to 1.7±0.1 for petrodiesel. In addition, analysis of the chemical composition by means of x-ray photoelectron spectroscopy revealed an up to a factor of two increased oxygen content on the primary particle surface for biodiesel. The length, curvature and distance of graphene layers were measured showing a greater structural disorder for biodiesel with shorter fringes of higher tortuosity. This change in carbon chemistry may reflect the higher oxygen content of biofuels. Overall, it seems that the oxygen content in the fuels is the underlying reason for the observed morphological change in the resulting soot particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BTK-2, a 32 residue scorpion toxin initially identified in the venom of red Indian scorpion Mesobuthus tamulus was cloned, overexpressed and purified using Cytochrome 155 fusion protein system developed in our laboratory. The synthetic gene coding for the peptide was designed taking into account optimal codon usage by Escherichia coli. High expression levels of the fusion protein enabled facile purification of this peptide. The presence of disulfide bonded isomers, occurring as distinctly populated states even in the fusion protein, were separated by gel filtration chromatography. The target peptide was liberated from the host protein by Tev protease cleavage and subsequent purification was achieved using RP-HPLC methods. Reverse phase HPLC clearly showed the presence of at least two isomeric forms of the peptide that were significantly populated. The oxidative folding of BTK-2 was achieved under ambient conditions during the course of purification. Structural characterization of the two forms, by solution homonuclear and heteronuclear NMR methods, has shown that these two forms exhibit significantly different structural properties, and represent the natively folded and a "misfolded" form of the peptide. The formation of properly folded BTK-2 as a major fraction without the use of in vitro oxidative refolding methods clearly indicate the versatility of the Cytochrome b(5) fusion protein system for the efficient production of peptides for high resolution NMR studies.