929 resultados para Bioaccumulation and certain physiological responses of Perna spp exposed to Petroleum Hydrocarbons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Past studies of water stress in Eucalyptus spp. generally highlighted the role of fewer than five “important” metabolites, whereas recent metabolomic studies on other genera have shown tens of compounds are affected. There are currently no metabolite profiling data for responses of stress-tolerant species to water stress. We used GC–MS metabolite profiling to examine the response of leaf metabolites to a long (2 month) and severe (Ψpredawn < −2 MPa) water stress in two species of the perennial tree genus Eucalyptus (the mesic Eucalyptus pauciflora and the semi-arid Eucalyptus dumosa). Polar metabolites in leaves were analysed by GC–MS and inorganic ions by capillary electrophoresis. Pressure–volume curves and metabolite measurements showed that water stress led to more negative osmotic potential and increased total osmotically active solutes in leaves of both species. Water stress affected around 30–40% of measured metabolites in E. dumosa and 10–15% in E. pauciflora. There were many metabolites that were affected in E. dumosa but not E. pauciflora, and some that had opposite responses in the two species. For example, in E. dumosa there were increases in five acyclic sugar alcohols and four low-abundance carbohydrates that were unaffected by water stress in E. pauciflora. Re-watering increased osmotic potential and decreased total osmotically active solutes in E. pauciflora, whereas in E. dumosa re-watering led to further decreases in osmotic potential and increases in total osmotically active solutes. This experiment has added several extra dimensions to previous targeted analyses of water stress responses in Eucalyptus, and highlights that even species that are closely related (e.g. congeners) may respond differently to water stress and re-watering

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the role of the isoflavones daidzein and genistein on the chemotropic behavior of germinating cysts of Phytophthora sojae. Hyphal germlings were shown to respond chemotropically to daidzein and genistein, suggesting that hyphal tips from zoospores that have encysted adjacent to the root may use specific host isoflavones to locate their host. Observations of the contact response of hyphal germlings were made on several different substrates in the presence and absence of isoflavones. Hyphal tips of germlings detected and penetrated pores in membranes and produced multiple appressoria on smooth, impenetrable surfaces. Hyphae that successfully penetrated the synthetic membrane were observed to grow away from the membrane surface. The presence of isoflavones in the medium surrounding the hyphal germlings did not appear to alter any of those habits. Daidzein and genistein did not inhibit germination or initial hyphal growth at concentrations up to 20 μm.