925 resultados para Binocular stereo
Resumo:
In the context of aerial imagery, one of the first steps toward a coherent processing of the information contained in multiple images is geo-registration, which consists in assigning geographic 3D coordinates to the pixels of the image. This enables accurate alignment and geo-positioning of multiple images, detection of moving objects and fusion of data acquired from multiple sensors. To solve this problem there are different approaches that require, in addition to a precise characterization of the camera sensor, high resolution referenced images or terrain elevation models, which are usually not publicly available or out of date. Building upon the idea of developing technology that does not need a reference terrain elevation model, we propose a geo-registration technique that applies variational methods to obtain a dense and coherent surface elevation model that is used to replace the reference model. The surface elevation model is built by interpolation of scattered 3D points, which are obtained in a two-step process following a classical stereo pipeline: first, coherent disparity maps between image pairs of a video sequence are estimated and then image point correspondences are back-projected. The proposed variational method enforces continuity of the disparity map not only along epipolar lines (as done by previous geo-registration techniques) but also across them, in the full 2D image domain. In the experiments, aerial images from synthetic video sequences have been used to validate the proposed technique.
Resumo:
Remote sensing imaging systems for the measurement of oceanic sea states have recently attracted renovated attention. Imaging technology is economical, non-invasive and enables a better understanding of the space-time dynamics of ocean waves over an area rather than at selected point locations of previous monitoring methods (buoys, wave gauges, etc.). We present recent progress in space-time measurement of ocean waves using stereo vision systems on offshore platforms. Both traditional disparity-based systems and modern elevation-based ones are presented in a variational optimization framework: the main idea is to pose the stereoscopic reconstruction problem of the surface of the ocean in a variational setting and design an energy functional whose minimizer is the desired temporal sequence of wave heights. The functional combines photometric observations as well as spatial and temporal smoothness priors. Disparity methods estimate the disparity between images as an intermediate step toward retrieving the depth of the waves with respect to the cameras, whereas elevation methods estimate the ocean surface displacements directly in 3-D space. Both techniques are used to measure ocean waves from real data collected at offshore platforms in the Black Sea (Crimean Peninsula, Ukraine) and the Northern Adriatic Sea (Venice coast, Italy). Then, the statistical and spectral properties of the resulting observed waves are analyzed. We show the advantages and disadvantages of the presented stereo vision systems and discuss the improvement of their performance in critical issues such as the robustness of the camera calibration in spite of undesired variations of the camera parameters.
Resumo:
In this paper we propose an innovative method for the automatic detection and tracking of road traffic signs using an onboard stereo camera. It involves a combination of monocular and stereo analysis strategies to increase the reliability of the detections such that it can boost the performance of any traffic sign recognition scheme. Firstly, an adaptive color and appearance based detection is applied at single camera level to generate a set of traffic sign hypotheses. In turn, stereo information allows for sparse 3D reconstruction of potential traffic signs through a SURF-based matching strategy. Namely, the plane that best fits the cloud of 3D points traced back from feature matches is estimated using a RANSAC based approach to improve robustness to outliers. Temporal consistency of the 3D information is ensured through a Kalman-based tracking stage. This also allows for the generation of a predicted 3D traffic sign model, which is in turn used to enhance the previously mentioned color-based detector through a feedback loop, thus improving detection accuracy. The proposed solution has been tested with real sequences under several illumination conditions and in both urban areas and highways, achieving very high detection rates in challenging environments, including rapid motion and significant perspective distortion
Resumo:
Stereo video techniques are effective for estimating the space-time wave dynamics over an area of the ocean. Indeed, a stereo camera view allows retrieval of both spatial and temporal data whose statistical content is richer than that of time series data retrieved from point wave probes. To prove this, we consider an application of the Wave Acquisition Stereo System (WASS) for the analysis of offshore video measurements of gravity waves in the Northern Adriatic Sea. In particular, we deployed WASS at the oceanographic platform Acqua Alta, off the Venice coast, Italy. Three experimental studies were performed, and the overlapping field of view of the acquired stereo images covered an area of approximately 1100 m2. Analysis of the WASS measurements show that the sea surface can be accurately estimated in space and time together, yielding associated directional spectra and wave statistics that agree well with theoretical models. From the observed wavenumber-frequency spectrum one can also predict the vertical profile of the current flow underneath the wave surface. Finally, future improvements of WASS and applications are discussed.
Resumo:
Validating modern oceanographic theories using models produced through stereo computer vision principles has recently emerged. Space-time (4-D) models of the ocean surface may be generated by stacking a series of 3-D reconstructions independently generated for each time instant or, in a more robust manner, by simultaneously processing several snapshots coherently in a true ?4-D reconstruction.? However, the accuracy of these computer-vision-generated models is subject to the estimations of camera parameters, which may be corrupted under the influence of natural factors such as wind and vibrations. Therefore, removing the unpredictable errors of the camera parameters is necessary for an accurate reconstruction. In this paper, we propose a novel algorithm that can jointly perform a 4-D reconstruction as well as correct the camera parameter errors introduced by external factors. The technique is founded upon variational optimization methods to benefit from their numerous advantages: continuity of the estimated surface in space and time, robustness, and accuracy. The performance of the proposed algorithm is tested using synthetic data produced through computer graphics techniques, based on which the errors of the camera parameters arising from natural factors can be simulated.
Resumo:
Praying mantids use binocular cues to judge whether their prey is in striking distance. When there are several moving targets within their binocular visual field, mantids need to solve the correspondence problem. They must select between the possible pairings of retinal images in the two eyes so that they can strike at a single real target. In this study, mantids were presented with two targets in various configurations, and the resulting fixating saccades that precede the strike were analyzed. The distributions of saccades show that mantids consistently prefer one out of several possible matches. Selection is in part guided by the position and the spatiotemporal features of the target image in each eye. Selection also depends upon the binocular disparity of the images, suggesting that insects can perform local binocular computations. The pairing rules ensure that mantids tend to aim at real targets and not at “ghost” targets arising from false matches.
Resumo:
The visual system utilizes binocular disparity to discriminate the relative depth of objects in space. Since the striate cortex is the first site along the central visual pathways at which signals from the left and right eyes converge onto a single neuron, encoding of binocular disparity is thought to begin in this region. There are two possible mechanisms for encoding binocular disparity through simple cells in the striate cortex: a difference in receptive field (RF) position between the two eyes (RF position disparity) and a difference in RF profile between the two eyes (RF phase disparity). Although there have been studies supporting each of the two encoding mechanisms, both mechanisms have not been examined in a single study. Therefore, the relative roles of the two mechanisms have not been determined. To address this issue, we have mapped left and right eye RFs of simple cells in the cat’s striate cortex using binary m-sequence noise, and then we have estimated RF position and phase disparities. We find that RF position disparities are generally limited to small values that are not sufficient to encode large binocular disparities. In contrast, RF phase disparities cover a wide range of binocular disparities and exhibit dependencies on orientation and spatial frequency in a manner expected for a mechanism that encodes binocular disparity. These results indicate that binocular disparity is mainly encoded through RF phase disparity. However, RF position disparity may play a significant role for cells with high spatial frequency selectivity, which are constrained to small RF phase disparities.
Resumo:
The prevalent view of binocular rivalry holds that it is a competition between the two eyes mediated by reciprocal inhibition among monocular neurons. This view is largely due to the nature of conventional rivalry-inducing stimuli, which are pairs of dissimilar images with coherent patterns within each eye’s image. Is it the eye of origin or the coherency of patterns that determines perceptual alternations between coherent percepts in binocular rivalry? We break the coherency of conventional stimuli and replace them by complementary patchworks of intermingled rivalrous images. Can the brain unscramble the pieces of the patchwork arriving from different eyes to obtain coherent percepts? We find that pattern coherency in itself can drive perceptual alternations, and the patchworks are reassembled into coherent forms by most observers. This result is in agreement with recent neurophysiological and psychophysical evidence demonstrating that there is more to binocular rivalry than mere eye competition.
Resumo:
Binocular disparity, the differential angular separation between pairs of image points in the two eyes, is the well-recognized basis for binocular distance perception. Without denying disparity's role in perceiving depth, we describe two perceptual phenomena, which indicate that a wider view of binocular vision is warranted. First, we show that disparity can play a critical role in two-dimensional perception by determining whether separate image fragments should be grouped as part of a single surface or segregated as parts of separate surfaces. Second, we show that stereoscopic vision is not limited to the registration and interpretation of binocular disparity but that it relies on half-occluded points, visible to one eye and not the other, to determine the layout and transparency of surfaces. Because these half-visible points are coded by neurons carrying eye-of-origin information, we suggest that the perception of these surface properties depends on neural activity available at visual cortical area V1.
Resumo:
Falls are one of the greatest threats to elderly health in their daily living routines and activities. Therefore, it is very important to detect falls of an elderly in a timely and accurate manner, so that immediate response and proper care can be provided, by sending fall alarms to caregivers. Radar is an effective non-intrusive sensing modality which is well suited for this purpose, which can detect human motions in all types of environments, penetrate walls and fabrics, preserve privacy, and is insensitive to lighting conditions. Micro-Doppler features are utilized in radar signal corresponding to human body motions and gait to detect falls using a narrowband pulse-Doppler radar. Human motions cause time-varying Doppler signatures, which are analyzed using time-frequency representations and matching pursuit decomposition (MPD) for feature extraction and fall detection. The extracted features include MPD features and the principal components of the time-frequency signal representations. To analyze the sequential characteristics of typical falls, the extracted features are used for training and testing hidden Markov models (HMM) in different falling scenarios. Experimental results demonstrate that the proposed algorithm and method achieve fast and accurate fall detections. The risk of falls increases sharply when the elderly or patients try to exit beds. Thus, if a bed exit can be detected at an early stage of this motion, the related injuries can be prevented with a high probability. To detect bed exit for fall prevention, the trajectory of head movements is used for recognize such human motion. A head detector is trained using the histogram of oriented gradient (HOG) features of the head and shoulder areas from recorded bed exit images. A data association algorithm is applied on the head detection results to eliminate head detection false alarms. Then the three dimensional (3D) head trajectories are constructed by matching scale-invariant feature transform (SIFT) keypoints in the detected head areas from both the left and right stereo images. The extracted 3D head trajectories are used for training and testing an HMM based classifier for recognizing bed exit activities. The results of the classifier are presented and discussed in the thesis, which demonstrates the effectiveness of the proposed stereo vision based bed exit detection approach.
Resumo:
Purpose: To determine the scientific evidence about the prevalence of accommodative and nonstrabismic binocular anomalies. Methods: We carried out a systematic review of studies published between 1986 and 2009, analysing the MEDLINE, CINAHL, FRANCIS and PsycINFO databases. We considered admitting those papers related to prevalence in paediatric and adult populations. We identified 660 articles and 10 papers met the inclusion criteria. Results: There is a wide range of prevalence, particularly for accommodative insufficiency (2 %-61.7 %) and convergence insufficiency (2.25 %-33 %). More studies are available for children (7) compared with adults (3). Most of studies examine clinical population (5 studies) with 3 assessed at schools and 1 at University with samples that vary from 65 to 2048 patients. There is great variability regarding the number of diagnostic signs ranging from 1 to 5 clinical signs. We found a relation between the number of clinical signs used and prevalence values for convergence insufficiency although this relationship cannot be confirmed for other conditions. Conclusion: There is a lack of proper epidemiological studies about the prevalence of accommodative and nonstrabismic binocular anomalies. Studies reviewed examine consecutive or selected patients in clinical settings and schools but in any case they are randomized and representative of their populations with no data for general population. The wide discrepancies in prevalence figures are due to both sample population and the lack of uniformity in diagnostic criteria so that it makes difficult to compile results. Biases and limitations of reports determine that prevalence rates offered are only estimations from selected populations.
Resumo:
Purpose: To analyze the diagnostic criteria used in the scientific literature published in the past 25 years for accommodative and nonstrabismic binocular dysfunctions and to explore if the epidemiological analysis of diagnostic validity has been used to propose which clinical criteria should be used for diagnostic purposes. Methods: We carried out a systematic review of papers on accommodative and non-strabic binocular disorders published from 1986 to 2012 analysing the MEDLINE, CINAHL, PsycINFO and FRANCIS databases. We admitted original articles about diagnosis of these anomalies in any population. We identified 839 articles and 12 studies were included. The quality of included articles was assessed using the QUADAS-2 tool. Results: The review shows a wide range of clinical signs and cut-off points between authors. Only 3 studies (regarding accommodative anomalies) assessed diagnostic accuracy of clinical signs. Their results suggest using the accommodative amplitude and monocular accommodative facility for diagnosing accommodative insufficiency and a high positive relative accommodation for accommodative excess. The remaining 9 articles did not analyze diagnostic accuracy, assessing a diagnosis with the criteria the authors considered. We also found differences between studies in the way of considering patients’ symptomatology. 3 studies of 12 analyzed, performed a validation of a symptom survey used for convergence insufficiency. Conclusions: Scientific literature reveals differences between authors according to diagnostic criteria for accommodative and nonstrabismic binocular dysfunctions. Diagnostic accuracy studies show that there is only certain evidence for accommodative conditions. For binocular anomalies there is only evidence about a validated questionnaire for convergence insufficiency with no data of diagnostic accuracy.
Resumo:
Objective: To evaluate two cases of intermittent exotropia (IX(T)) treated by vision therapy the efficacy of the treatment by complementing the clinical examination with a 3-D video-oculography to register and to evidence the potential applicability of this technology for such purpose. Methods: We report the binocular alignment changes occurring after vision therapy in a woman of 36 years with an IX(T) of 25 prism diopters (Δ) at far and 18 Δ at near and a child of 10 years with 8 Δ of IX(T) in primary position associated to 6 Δ of left eye hypotropia. Both patients presented good visual acuity with correction in both eyes. Instability of ocular deviation was evident by VOG analysis, revealing also the presence of vertical and torsional components. Binocular vision therapy was prescribed and performed including different types of vergence, accommodation, and consciousness of diplopia training. Results: After therapy, excellent ranges of fusional vergence and a “to-the-nose” near point of convergence were obtained. The 3-D VOG examination (Sensoro Motoric Instruments, Teltow, Germany) confirmed the compensation of the deviation with a high level of stability of binocular alignment. Significant improvement could be observed after therapy in the vertical and torsional components that were found to become more stable. Patients were very satisfied with the outcome obtained by vision therapy. Conclusion: 3D-VOG is a useful technique for providing an objective register of the compensation of the ocular deviation and the stability of the binocular alignment achieved after vision therapy in cases of IX(T), providing a detailed analysis of vertical and torsional improvements.
Resumo:
Background: The pupillary light reflex characterizes the direct and consensual response of the eye to the perceived brightness of a stimulus. It has been used as indicator of both neurological and optic nerve pathologies. As with other eye reflexes, this reflex constitutes an almost instantaneous movement and is linked to activation of the same midbrain area. The latency of the pupillary light reflex is around 200 ms, although the literature also indicates that the fastest eye reflexes last 20 ms. Therefore, a system with sufficiently high spatial and temporal resolutions is required for accurate assessment. In this study, we analyzed the pupillary light reflex to determine whether any small discrepancy exists between the direct and consensual responses, and to ascertain whether any other eye reflex occurs before the pupillary light reflex. Methods: We constructed a binocular video-oculography system two high-speed cameras that simultaneously focused on both eyes. This was then employed to assess the direct and consensual responses of each eye using our own algorithm based on Circular Hough Transform to detect and track the pupil. Time parameters describing the pupillary light reflex were obtained from the radius time-variation. Eight healthy subjects (4 women, 4 men, aged 24–45) participated in this experiment. Results: Our system, which has a resolution of 15 microns and 4 ms, obtained time parameters describing the pupillary light reflex that were similar to those reported in previous studies, with no significant differences between direct and consensual reflexes. Moreover, it revealed an incomplete reflex blink and an upward eye movement at around 100 ms that may correspond to Bell’s phenomenon. Conclusions: Direct and consensual pupillary responses do not any significant temporal differences. The system and method described here could prove useful for further assessment of pupillary and blink reflexes. The resolution obtained revealed the existence reported here of an early incomplete blink and an upward eye movement.
Resumo:
"PMS 830"--Cover, v. 1; "PMS 831"--Cover, v. 2; "PMS 832"--Cover, v. 3; "PMS 833"--Cover, v. 4; "PMS 835"--Cover, v. 6; "PMS 838"--Cover, v. 6a; "PMS 839"--Cover. v. 7; "PMS 840"--Cover, v. 8.