891 resultados para Big data analytics
Resumo:
The amount of data collected from an individual player during a football match has increased significantly in recent years, following technological evolution in positional tracking. However, given the short time that separates competitions, the common analysis of these data focuses on the magnitude of actions of each player, while considering either technical or physical perform- ance. This focus leads to a considerable amount of information not being taken into account in performance optimization, particularly while considering a sequence of different matches of the same team. In this presentation, we will present a tactical performance indicator that considers players’ overall positioning and their level of coordination during the match. This performance indicator will be applied in different time scales, with a particular focus on possible practical applications.
Resumo:
Big data are reshaping the way we interact with technology, thus fostering new applications to increase the safety-assessment of foods. An extraordinary amount of information is analysed using machine learning approaches aimed at detecting the existence or predicting the likelihood of future risks. Food business operators have to share the results of these analyses when applying to place on the market regulated products, whereas agri-food safety agencies (including the European Food Safety Authority) are exploring new avenues to increase the accuracy of their evaluations by processing Big data. Such an informational endowment brings with it opportunities and risks correlated to the extraction of meaningful inferences from data. However, conflicting interests and tensions among the involved entities - the industry, food safety agencies, and consumers - hinder the finding of shared methods to steer the processing of Big data in a sound, transparent and trustworthy way. A recent reform in the EU sectoral legislation, the lack of trust and the presence of a considerable number of stakeholders highlight the need of ethical contributions aimed at steering the development and the deployment of Big data applications. Moreover, Artificial Intelligence guidelines and charters published by European Union institutions and Member States have to be discussed in light of applied contexts, including the one at stake. This thesis aims to contribute to these goals by discussing what principles should be put forward when processing Big data in the context of agri-food safety-risk assessment. The research focuses on two interviewed topics - data ownership and data governance - by evaluating how the regulatory framework addresses the challenges raised by Big data analysis in these domains. The outcome of the project is a tentative Roadmap aimed to identify the principles to be observed when processing Big data in this domain and their possible implementations.
Resumo:
I big data sono caratterizzati dalle ben note 4v: volume, velocità, veracità e varietà. Quest'ultima risulta di importanza critica nei sistemi schema-less, dove il concetto di schema non è rigido. In questo contesto rientrano i database NoSQL, i quali offrono modelli dati diversi dal classico modello dati relazionale, ovvero: documentale, wide-column, grafo e key-value. Si parla di multistore quando ci si riferisce all'uso di database con modelli dati diversi che vengono esposti con un'unica interfaccia di interrogazione, sia per sfruttare caratteristiche di un modello dati che per le maggiori performance dei database NoSQL in contesti distribuiti. Fare analisi sui dati all'interno di un multistore risulta molto più complesso: i dati devono essere integrati e va ripristinata la consistenza. A questo scopo nasce la necessità di approcci più soft, chiamati pay-as-you-go: l'integrazione è leggera e incrementale, aggira la complessità degli approcci di integrazione tradizionali e restituisce risposte best-effort o approssimative. Seguendo tale filosofia, nasce il concetto di dataspace come rappresentazione logica e di alto livello dei dataset disponibili. Obiettivo di questo lavoro tesi è studiare, progettare e realizzare una modalità di interrogazione delle sorgenti dati eterogenee in contesto multistore con l'intento di fare analisi situazionali, considerando le problematiche di varietà e appoggiandosi all'integrazione fornita dal dataspace. Lo scopo finale è di sviluppare un prototipo che esponga un'interfaccia per interrogare il dataspace con la semantica GPSJ, ovvero la classe di query più comune nelle applicazioni OLAP. Un'interrogazione nel dataspace dovrà essere tradotta in una serie di interrogazioni nelle sorgenti e, attraverso un livello middleware, i risultati parziali dovranno essere integrati tra loro in modo che il risultato dell'interrogazione sia corretto e allo stesso tempo completo.
Resumo:
The fourth industrial revolution, also known as Industry 4.0, has rapidly gained traction in businesses across Europe and the world, becoming a central theme in small, medium, and large enterprises alike. This new paradigm shifts the focus from locally-based and barely automated firms to a globally interconnected industrial sector, stimulating economic growth and productivity, and supporting the upskilling and reskilling of employees. However, despite the maturity and scalability of information and cloud technologies, the support systems already present in the machine field are often outdated and lack the necessary security, access control, and advanced communication capabilities. This dissertation proposes architectures and technologies designed to bridge the gap between Operational and Information Technology, in a manner that is non-disruptive, efficient, and scalable. The proposal presents cloud-enabled data-gathering architectures that make use of the newest IT and networking technologies to achieve the desired quality of service and non-functional properties. By harnessing industrial and business data, processes can be optimized even before product sale, while the integrated environment enhances data exchange for post-sale support. The architectures have been tested and have shown encouraging performance results, providing a promising solution for companies looking to embrace Industry 4.0, enhance their operational capabilities, and prepare themselves for the upcoming fifth human-centric revolution.
Resumo:
The chapters of the thesis focus on a limited variety of selected themes in EU privacy and data protection law. Chapter 1 sets out the general introduction on the research topic. Chapter 2 touches upon the methodology used in the research. Chapter 3 conceptualises the basic notions from a legal standpoint. Chapter 4 examines the current regulatory regime applicable to digital health technologies, healthcare emergencies, privacy, and data protection. Chapter 5 provides case studies on the application deployed in the Covid-19 scenario, from the perspective of privacy and data protection. Chapter 6 addresses the post-Covid European regulatory initiatives on the subject matter, and its potential effects on privacy and data protection. Chapter 7 is the outcome of a six-month internship with a company in Italy and focuses on the protection of fundamental rights through common standardisation and certification, demonstrating that such standards can serve as supporting tools to guarantee the right to privacy and data protection in digital health technologies. The thesis concludes with the observation that finding and transposing European privacy and data protection standards into scenarios, such as public healthcare emergencies where digital health technologies are deployed, requires rapid coordination between the European Data Protection Authorities and the Member States guarantee that individual privacy and data protection rights are ensured.
Resumo:
With the advent of new technologies it is increasingly easier to find data of different nature from even more accurate sensors that measure the most disparate physical quantities and with different methodologies. The collection of data thus becomes progressively important and takes the form of archiving, cataloging and online and offline consultation of information. Over time, the amount of data collected can become so relevant that it contains information that cannot be easily explored manually or with basic statistical techniques. The use of Big Data therefore becomes the object of more advanced investigation techniques, such as Machine Learning and Deep Learning. In this work some applications in the world of precision zootechnics and heat stress accused by dairy cows are described. Experimental Italian and German stables were involved for the training and testing of the Random Forest algorithm, obtaining a prediction of milk production depending on the microclimatic conditions of the previous days with satisfactory accuracy. Furthermore, in order to identify an objective method for identifying production drops, compared to the Wood model, typically used as an analytical model of the lactation curve, a Robust Statistics technique was used. Its application on some sample lactations and the results obtained allow us to be confident about the use of this method in the future.
Resumo:
The thesis represents the conclusive outcome of the European Joint Doctorate programmein Law, Science & Technology funded by the European Commission with the instrument Marie Skłodowska-Curie Innovative Training Networks actions inside of the H2020, grantagreement n. 814177. The tension between data protection and privacy from one side, and the need of granting further uses of processed personal datails is investigated, drawing the lines of the technological development of the de-anonymization/re-identification risk with an explorative survey. After acknowledging its span, it is questioned whether a certain degree of anonymity can still be granted focusing on a double perspective: an objective and a subjective perspective. The objective perspective focuses on the data processing models per se, while the subjective perspective investigates whether the distribution of roles and responsibilities among stakeholders can ensure data anonymity.
Resumo:
This thesis investigates the legal, ethical, technical, and psychological issues of general data processing and artificial intelligence practices and the explainability of AI systems. It consists of two main parts. In the initial section, we provide a comprehensive overview of the big data processing ecosystem and the main challenges we face today. We then evaluate the GDPR’s data privacy framework in the European Union. The Trustworthy AI Framework proposed by the EU’s High-Level Expert Group on AI (AI HLEG) is examined in detail. The ethical principles for the foundation and realization of Trustworthy AI are analyzed along with the assessment list prepared by the AI HLEG. Then, we list the main big data challenges the European researchers and institutions identified and provide a literature review on the technical and organizational measures to address these challenges. A quantitative analysis is conducted on the identified big data challenges and the measures to address them, which leads to practical recommendations for better data processing and AI practices in the EU. In the subsequent part, we concentrate on the explainability of AI systems. We clarify the terminology and list the goals aimed at the explainability of AI systems. We identify the reasons for the explainability-accuracy trade-off and how we can address it. We conduct a comparative cognitive analysis between human reasoning and machine-generated explanations with the aim of understanding how explainable AI can contribute to human reasoning. We then focus on the technical and legal responses to remedy the explainability problem. In this part, GDPR’s right to explanation framework and safeguards are analyzed in-depth with their contribution to the realization of Trustworthy AI. Then, we analyze the explanation techniques applicable at different stages of machine learning and propose several recommendations in chronological order to develop GDPR-compliant and Trustworthy XAI systems.
Resumo:
Big data and AI are paving the way to promising scenarios in clinical practice and research. However, the use of such technologies might clash with GDPR requirements. Today, two forces are driving the EU policies in this domain. The first is the necessity to protect individuals’ safety and fundamental rights. The second is to incentivize the deployment of innovative technologies. The first objective is pursued by legislative acts such as the GDPR or the AIA, the second is supported by the new data strategy recently launched by the European Commission. Against this background, the thesis analyses the issue of GDPR compliance when big data and AI systems are implemented in the health domain. The thesis focuses on the use of co-regulatory tools for compliance with the GDPR. This work argues that there are two level of co-regulation in the EU legal system. The first, more general, is the approach pursued by the EU legislator when shaping legislative measures that deal with fast-evolving technologies. The GDPR can be deemed a co-regulatory solution since it mainly introduces general requirements, which implementation shall then be interpretated by the addressee of the law following a risk-based approach. This approach, although useful is costly and sometimes burdensome for organisations. The second co-regulatory level is represented by specific co-regulatory tools, such as code of conduct and certification mechanisms. These tools are meant to guide and support the interpretation effort of the addressee of the law. The thesis argues that the lack of co-regulatory tools which are supposed to implement data protection law in specific situations could be an obstacle to the deployment of innovative solutions in complex scenario such as the health ecosystem. The thesis advances hypothesis on theoretical level about the reasons of such a lack of co-regulatory solutions.
Resumo:
L’argomento di questa tesi nasce dall’idea di unire due temi che stanno assumendo sempre più importanza nei nostri giorni, ovvero l’economia circolare e i big data, e ha come obiettivo quello di fornire dei punti di collegamento tra questi due. In un mondo tecnologico come quello di oggi, che sta trasformando tutto quello che abbiamo tra le nostre mani in digitale, si stanno svolgendo sempre più studi per capire come la sostenibilità possa essere supportata dalle tecnologie emergenti. L’economia circolare costituisce un nuovo paradigma economico in grado di sostituirsi a modelli di crescita incentrati su una visione lineare, puntando ad una riduzione degli sprechi e ad un radicale ripensamento nella concezione dei prodotti e nel loro uso nel tempo. In questa transizione verso un’economia circolare può essere utile considerare di assumere le nuove tecnologie emergenti per semplificare i processi di produzione e attuare politiche più sostenibili, che stanno diventando sempre più apprezzate anche dai consumatori. Il tutto verrà sostenuto dall’utilizzo sempre più significativo dei big data, ovvero di grandi dati ricchi di informazioni che permettono, tramite un’attenta analisi, di sviluppare piani di produzione che seguono il paradigma circolare: questo viene attuato grazie ai nuovi sistemi digitali sempre più innovativi e alle figure specializzate che acquisiscono sempre più conoscenze in questo campo.
Resumo:
Automatic generation of classification rules has been an increasingly popular technique in commercial applications such as Big Data analytics, rule based expert systems and decision making systems. However, a principal problem that arises with most methods for generation of classification rules is the overfit-ting of training data. When Big Data is dealt with, this may result in the generation of a large number of complex rules. This may not only increase computational cost but also lower the accuracy in predicting further unseen instances. This has led to the necessity of developing pruning methods for the simplification of rules. In addition, classification rules are used further to make predictions after the completion of their generation. As efficiency is concerned, it is expected to find the first rule that fires as soon as possible by searching through a rule set. Thus a suit-able structure is required to represent the rule set effectively. In this chapter, the authors introduce a unified framework for construction of rule based classification systems consisting of three operations on Big Data: rule generation, rule simplification and rule representation. The authors also review some existing methods and techniques used for each of the three operations and highlight their limitations. They introduce some novel methods and techniques developed by them recently. These methods and techniques are also discussed in comparison to existing ones with respect to efficient processing of Big Data.
Resumo:
Incluye bibliografía
Resumo:
The new digital technologies have led to widespread use of cloud computing, recognition of the potential of big data analytics, and significant progress in aspects of the Internet of Things, such as home automation, smart cities and grids and digital manufacturing. In addition to closing gaps in respect of the basic necessities of access and usage, now the conditions must be established for using the new platforms and finding ways to participate actively in the creation of content and even new applications and platforms. This message runs through the three chapters of this book. Chapter I presents the main features of the digital revolution, emphasizing that today’s world economy is a digital economy. Chapter II examines the region’s strengths and weaknesses with respect to digital access and consumption. Chapter III reviews the main policy debates and urges countries to take a more proactive approach towards, for example, regulation, network neutrality and combating cybercrime. The conclusion highlights two crucial elements: first, the need to take steps towards a single regional digital market that can compete in a world of global platforms by tapping the benefits of economies of scale and developing network economies; and second, the significance of the next stage of the digital agenda for Latin America and the Caribbean (eLAC2018), which will embody the latest updates to a cooperation strategy that has been in place for over a decade.
Resumo:
Abstract: Context aware applications, which can adapt their behaviors to changing environments, are attracting more and more attention. To simplify the complexity of developing applications, context aware middleware, which introduces context awareness into the traditional middleware, is highlighted to provide a homogeneous interface involving generic context management solutions. This paper provides a survey of state-of-the-art context aware middleware architectures proposed during the period from 2009 through 2015. First, a preliminary background, such as the principles of context, context awareness, context modelling, and context reasoning, is provided for a comprehensive understanding of context aware middleware. On this basis, an overview of eleven carefully selected middleware architectures is presented and their main features explained. Then, thorough comparisons and analysis of the presented middleware architectures are performed based on technical parameters including architectural style, context abstraction, context reasoning, scalability, fault tolerance, interoperability, service discovery, storage, security & privacy, context awareness level, and cloud-based big data analytics. The analysis shows that there is actually no context aware middleware architecture that complies with all requirements. Finally, challenges are pointed out as open issues for future work.
Resumo:
Questa tesi concerne quella che è una generalizzata tendenza verso la trasformazione digitale dei processi di business. Questa evoluzione, che implica l’utilizzo delle moderne tecnologie informatiche tra cui il Cloud Computing, le Big Data Analytics e gli strumenti Mobile, non è priva di insidie che vanno di volta in volta individuate ed affrontate opportunamente. In particolare si farà riferimento ad un caso aziendale, quello della nota azienda bolognese FAAC spa, ed alla funzione acquisti. Nell'ambito degli approvvigionamenti l'azienda sente la necessità di ristrutturare e digitalizzare il processo di richiesta di offerta (RdO) ai propri fornitori, al fine di consentire alla funzione di acquisti di concentrarsi sull'implementazione della strategia aziendale più che sull'operatività quotidiana. Si procede quindi in questo elaborato all'implementazione di un progetto di implementazione di una piattaforma specifica di e-procurement per la gestione delle RdO. Preliminarmente vengono analizzati alcuni esempi di project management presenti in letteratura e quindi viene definito un modello per la gestione del progetto specifico. Lo svolgimento comprende quindi: una fase di definizione degli obiettivi di continuità dell'azienda, un'analisi As-Is dei processi, la definizione degli obiettivi specifici di progetto e dei KPI di valutazione delle performance, la progettazione della piattaforma software ed infine alcune valutazioni relative ai rischi ed alle alternative dell'implementazione.