956 resultados para Beta-3-adrenergic Agonist
Resumo:
The alpha(2)-adrenergic agonist clonidine and the neuropeptide oxytocin, inhibit sodium intake when injected intracerebroventricularly (i.c.v.). The present work investigates whether (1) vasopressin also inhibits sodium intake when injected i.c.v., and (2) the effect of oxytocin and of vasopressin on sodium intake is affected by i.c.v. injection of idazoxan, an alpha(2)-adrenergic antagonist. Clonidine (30 nmol), oxytocin (40, 80 nmol) and vasopressin (40, 80 nmol) were injected i.c.v. 20 min prior to a 1.5% NaCl appetite test, in rats depleted of sodium for 24 h by a combination of a single s.c. injection of furosemide (10 mg/rat) and removal of ambient sodium. Every dose of clonidine, oxytocin and vasopressin inhibited the 1.5% NaCl intake. Seizures were observed with the higher dose of vasopressin, but not with either dose of oxytocin. The effect of i.c.v. injection of clonidine (30 nmol), oxytocin (80 nmol) or vasopressin (40 nmol) was partially inhibited by prior i.c.v. injection of idazoxan (160, 320 nmol). The results suggest that the inhibition of 1.5% NaCl intake induced by i.c.v. injection of neuropeptides in sodium-depleted rats depends, in part, on the activation of central alpha(2)-adrenoceptors. (C) 1997 Elsevier B.V. B.V. All rights reserved.
Resumo:
The present experiments were conducted to investigate the role of the alpha (1A)-, alpha (1B), beta (1),- and beta (2)-adrenoceptors of the lateral hypothalamus (LH) on the water and salt intake responses elicited by subfornical organ (SFO) injection of angiotensin II (ANG II) in rats. 5-methylurapidil (an alpha (1A)-adrenergic antagonist), cyclazosin (an alpha (1B)-adrenergic antagonist) and ICI-118,551 (a beta (2)-adrenergic antagonist) injected into the LH produced a dose-dependent reduction, whereas efaroxan (an alpha (2)-antagonist) increased the water intake induced by administration of ANG II into the SFO. These data show that injection of 5-methylurapidil into the LH prior to ANG II into the SFO increased the water and sodium intake induced by the injection of ANG II. The present data also show that atenolol (a beta (1)-adrenergic antagonist), ICI-118,551, cyclazosin, or efaroxan injected into the LH reduced in a dose-dependent manner the water and sodium intake to angiotensinergic activation of SFO. Thus, the alpha (1)- and beta -adrenoceptors of the LH are possibly involved with central mechanisms dependent on ANG II and SFO that control water and sodium intake. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
It is well known that histamine is found in high concentration in mast cell granules(1). The histamine content of these granules may be released to the extracellular space if an appropriate stimulus is provided(2). Besides histamine, other preformed active substances like enzymes, chemotatic factors and proteoglycans, as well as newly generated mediators like eicosanoids, platelet activating factor and adenosine are released during the secretion process of mast cells(3). The activation of mast cell degranulation has been associated with a number of pathologic disorders, most frequently, diseases derived from the atopic state(4). It is now evident that mast cells are the primary effector cells in the early reaction in both allergic and non-allergic asthma(5,6), although some authors doubt that the late reaction of asthma is a mast cell dependent event(6). Other studies point towards basophils as cellular elements involved in the secondary phase of inflammation in allergic diseases(7). Secretion would depend on a histamine releasing factor, and on the presence of IgE on the basophil's surface(8). There is also evidence suggesting involvement of mast cells in some non-allergic inflammatory processes like arthritis(9). The pharmacological management of these diseases basically consists in the use of methylxantines, beta 2-adrenergic agonists, glucocorticoids, sodium cromoglycate-like drugs, anticholinergic and antihistaminic H 1 antagonists(10). Their therapeutic effects include bronchodilatation, receptor and physiological antagonism, prevention of inflammatory responses induced by secondary cells, and finally, inhibition of mast cell activation(11). This review is concerned with compounds having inhibitory action on mast cell activation, and their possible importance on the pathophysiology of mast cell-related diseases.
Resumo:
The bed nucleus of the stria terminalis (BNST) is a limbic structure that has a direct influence on the autonomic, neuroendocrine, and behavioral responses to stress. It was recently reported that reversible inactivation of synaptic transmission within this structure causes antidepressant-like effects, indicating that activation of the BNST during stressful situations would facilitate the development of behavioral changes related to the neurobiology of depression. Moreover, noradrenergic neurotransmission is abundant in the BNST and has an important role in the regulation of emotional processes related to the stress response. Thus, this study aimed to test the hypothesis that activation of adrenoceptors within the BNST facilitates the development of behavioral consequences of stress. To investigate this hypothesis, male Wistar rats were stressed (forced swimming, 15 min) and 24 h later received intra-BNST injections of vehicle, WB4101, RX821002, CGP20712, or ICI118,551, which are selective α1, α2, β1, and β2 adrenoceptor antagonists, respectively, 10 min before a 5-min forced swimming test. It was observed that administration of WB4101 (10 and 15 nmol), CGP20712 (5 and 10 nmol), or ICI118,551 (5 nmol) into the BNST reduced the immobility time of rats subjected to forced swimming test, indicating an antidepressant-like effect. These findings suggest that activation of α1, β1, and β2 adrenoceptors in the BNST could be involved in the development of the behavioral consequences of stress. © 2013 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Resumo:
The objective of this work was to evaluate the effect of immunocastration and supplementation with ractopamine in the quality of pork loin enhanced with salt and sodium tripolyphosphate. Treatments consisted of the sexual condition of the swine (females, physically castrated and immunocastrated males) and supplementation or not with ractopamine in finishing diet. The loins subjected to the enhancement with sodium tripolyphosphate and salt were evaluated as to physical-chemical, microbiological, and sensory parameters. There was no interaction between sexual condition and ractopamine on fresh pork loin characteristics. The addition of ractopamine in the diet increased the shear force in fresh loins. There was also no effect of sexual condition nor of ractopamine in purge loss and loin protein content. Loins of immunocastrated animals had less weight loss by cooking, whereas loins of animals non-supplemented with ractopamine showed higher moisture than those supplemented. Enhancement decreases the shear force of the cuts, which was lower in the immunocastrated animals without ractopamine supplementation. Immunocastration provided pork loins with high a* and L* values. Differences in the appearance and texture of pork loins, regardless of sexual condition and ractopamine, are not perceived by consumers, showing that enhancement standardizes the cuts.
Resumo:
The present study was performed to investigate the effect of treatment with furosemide on the pressor response induced by intracerebroventricular (i.c.v.) injections of cholinergic (carbachol) and adrenergic (norepinephrine) agonists, angiotensin II (ANGII) and hypertonic saline (HS, 2 M NaCl). The changes induced by furosemide treatment on the pressor response to intravenous (i.v.) norepinephrine, ANGII and arginine vasopressin (AVP) were also studied. Rats with a stainless-steel cannula implanted into the lateral ventricle (LV) were used. Two injections of furosemide (30 mg/kg b.wt. each) were performed 12 and 1 h before the experiments. Treatment with furosemide reduced the pressor response induced by carbachol, norepinephrine and ANGII i.c.v., but no change was observed in the pressor response to i.c.v. 2 M NaCl. The pressor response to i.v. ANGII and norepinephrine, but not AVP, was also reduced after treatment with furosemide. These results show that the treatment with furosemide impairs the pressor responses induced by central or peripheral administration of adrenergic agonist or ANGII, as well as those induced by central cholinergic activation. The results suggest that the treatment with furosemide impairs central and peripheral pressor responses mediated by sympathetic activation and ANGII, but not those produced by AVP. © 1992.
Resumo:
In the present experiments, we investigated a possible involvement of noradrenergic receptors of the lateral hypothalamus (LH) in the water intake and pressor response induced by cholinergic stimulation of the medial septal area (MSA) in rats. The cholinergic agonist carbachol (2 nmol) injected into the MSA induced water intake and pressor response. The injection of an α2-adrenergic agonist, clonidine (20 and 40 nmol), but not of an α1-adrenergic agonist, phenylephrine (80 and 160 nmol), into the LH inhibits the water intake induced by carbachol injected into the MSA. The injection of clonidine or phenylephrine into the LH produced no change in the MAP increase induced by carbachol injected into the MSA. The present results suggest that adrenergic pathways involving the LH are important for the water intake, but not for the pressor response, induced by cholinergic activation of the MSA. © 1994.
Resumo:
The β-adrenergic agonist ractopamine is increasingly used in the swine industry due to higher consumer demand for leaner pork products. Redirecting nutrients to favor leanness rather than fat deposition, ractopamine improves growth and carcass traits of finishing pigs. However, the impact of this agonist on pork quality is not clearly defined. Understanding the biological effects of dietary ractopamine dose, treatment period, lysine levels, and the lysine to metabolizable energy ratio will help pork producers achieve improvements in animal performance, carcass leanness, and economic efficiency in swine production systems.
Resumo:
delta subunit-containing gamma-aminobutyric acid, type A (GABA(A))receptors are expressed extrasynaptically and mediate tonic inhibition. In cerebellar granule cells, they often form receptors together with alpha(1) and/or alpha(6) subunits. We were interested in determining the architecture of receptors containing both subunits. We predefined the subunit arrangement of several different GABA(A) receptor pentamers by concatenation. These receptors composed of alpha(1), alpha(6), beta(3), and delta subunits were expressed in Xenopus oocytes. Currents elicited in response to GABA were determined in the presence and absence of 3alpha,21-dihydroxy-5alpha-pregnan-20-one (THDOC) or ethanol, or currents were elicited by 4,5,6,7-tetrahydroisoxazolo[5,4-c]-pyridin-3-ol (THIP). Several subunit configurations formed active channels. We therefore conclude that delta can assume multiple positions in a receptor pentamer made up of alpha(1), alpha(6), beta(3), and delta subunits. The different receptors differ in their functional properties. Functional expression of one receptor type was only evident in the combined presence of the neurosteroid THDOC with the channel agonist GABA. Most, but not all, receptors active with GABA/THDOC responded to THIP. None of the receptors was modulated by ethanol concentrations up to 30 mm. Several observations point to a preferred position of delta subunits between two alpha subunits in alpha(1)alpha(6)beta(3)delta receptors. This property is shared by alpha(1)beta(3)delta and alpha(6)beta(3)delta receptors, but there are differences in the additionally expressed isoforms.
Resumo:
Delta (delta) subunit containing GABA(A) receptors are expressed extra-synaptically and mediate tonic inhibition. In cerebellar granule cells, they often form a receptor together with alpha(6) subunits. We were interested to determine the architecture of these receptors. We predefined the subunit arrangement of 24 different GABA(A) receptor pentamers by subunit concatenation. These receptors (composed of alpha(6), beta(3) and delta subunits) were expressed in Xenopus oocytes and their electrophysiological properties analyzed. Currents elicited in response to GABA were determined in presence and absence of 3alpha, 21-dihydroxy-5alpha-pregnan-20-one and to 4,5,6,7-tetrahydroisoxazolo[5,4-c]-pyridin-3-ol. alpha(6)-beta(3)-alpha(6)/delta receptors showed a substantial response to GABA alone. Three receptors, beta(3)-alpha(6)-delta/alpha(6)-beta(3), alpha(6)-beta(3)-alpha(6)/beta(3)-delta and beta(3)-delta-beta(3)/alpha(6)-beta(3), were only uncovered in the combined presence of the neurosteroid 3alpha, 21-dihydroxy-5alpha-pregnan-20-one with GABA. All four receptors were activated by 4,5,6,7-tetrahydroisoxazolo[5,4-c]-pyridin-3-ol. None of the functional receptors was modulated by physiological concentrations (up to 30 mM) of ethanol. GABA concentration response curves indicated that the delta subunit can contribute to the formation of an agonist site. We conclude from the investigated receptors that the delta subunit can assume multiple positions in a receptor pentamer composed of alpha(6), beta(3) and delta subunits.
Resumo:
GABA(A) receptors mediate inhibitory neurotransmission in the mammalian brain via synaptic and extrasynaptic receptors. The delta (delta)-subunit-containing receptors are expressed exclusively extra-synaptically and mediate tonic inhibition. In the present study, we were interested in determining the architecture of receptors containing the delta-subunit. To investigate this, we predefined the subunit arrangement by concatenation. We prepared five dual and three triple concatenated subunit constructs. These concatenated dual and triple constructs were used to predefine nine different GABA(A) receptor pentamers. These pentamers composed of alpha(1)-, beta(3)-, and delta-subunits were expressed in Xenopus oocytes and maximal currents elicited in response to 1 mm GABA were determined in the presence and absence of THDOC (3alpha, 21-dihydroxy-5alpha-pregnane-20-one). beta(3)-alpha(1)-delta/alpha(1)-beta(3) and beta(3)-alpha(1)-delta/beta(3)-alpha(1) resulted in the expression of large currents in response to GABA. Interestingly, the presence of the neurosteroid THDOC uncovered alpha(1)-beta(3)-alpha(1)/beta(3)-delta receptors, additionally. The functional receptors were characterized in detail using the agonist GABA, THDOC, Zn(2+), and ethanol and their properties were compared with those of non-concatenated alpha(1)beta(3) and alpha(1)beta(3)delta receptors. Each concatenated receptor isoform displayed a specific set of properties, but none of them responded to 30 mm ethanol. We conclude from the investigated receptors that delta can assume multiple positions in the receptor pentamer. The GABA dose-response properties of alpha(1)-beta(3)-alpha(1)/beta(3)-delta and beta(3)-alpha(1)-delta/alpha(1)-beta(3) match most closely the properties of non-concatenated alpha(1)beta(3)delta receptors. Furthermore, we show that the delta-subunit can contribute to the formation of an agonist site in alpha(1)-beta(3)-alpha(1)/beta(3)-delta receptors.
Resumo:
Using a "collision-coupling" model for $\beta \sb 2$-adrenergic receptor-mediated activation of adenylylcyclase in S49 lymphoma cells, the rate-limiting step of that activation was identified as the association of an "active-state", hormone-bound receptor (HR$\sp\*$) with a G$\sb{\rm s}$-adenylylcyclase moiety (G$\sb{\rm s}$C). It was subsequently hypothesized that the location of the rate-limiting step would not be shifted elsewhere in the activation scheme by receptor desensitization. The traditional focus of receptor desensitization studies has been on modifications of the receptor molecule itself. A "clear-cut" answer to the present hypothesis provides new information on modifications in the function of the receptor following desensitization.^ "Heterologous" desensitization was induced in wild type S49 cells with agents which increase intracellular cAMP without occupying $\beta\sb2$-adrenergic receptors; PGE$\sb1$, forskolin and dibutyryl cAMP. These treatments avoided overlapping effects on $\beta\sb2$-adrenergic receptors by the "homologous" mechanism, in which occupancy by hormone is causative. Although the steady-state activation rate was decreased following heterologous desensitization, that rate was still limited by the association between HR* and G$\sb{\rm s}$C. Thus "heterologous" desensitization acts at the equilibrium between HR and HR* (which is driven by hormone efficiency) such that HR* formation becomes less likely and the frequency of HR*G$\sb{\rm s}$C associations decreases.^ "Homologous" desensitization was induced by high (1-10$\mu$M) epinephrine concentrations in the S49 variant deficient in cAMP-dependent protein kinase, KIN$\sp-$. Use of KIN$\sp-$minimized overlapping effects by the "heterologous" mechanism, which is PKA-dependent. Following homologous desensitization, roughly 50% of the receptors in plasma membrane preparations no longer formed HR*G$\sb{\rm s}$C complexes; evidenced by a decrease in high-affinity hormone binding sites. The loss of HR*G$\sb{\rm s}$C formation did not appear related to the HR/HR* equilibrium. Increasing the efficiency of the assay agonist did nothing to "override" the effect. HR*G$\sb{\rm s}$C association was still the rate-limiting step among the remaining functional receptors. It was not distinguishable whether the remaining activity was "desensitized" due to adenylylcyclase having decreased access to receptors within plasma membrane fragments or due to an effect similar to "heterologous" desensitization. ^
Resumo:
The frizzled gene family of putative Wnt receptors encodes proteins that have a seven-transmembrane-spanning motif characteristic of G protein-linked receptors, though no loss-of-function studies have demonstrated a requirement for G proteins for Frizzled signaling. We engineered a Frizzled-2 chimera responsive to β-adrenergic agonist by using the ligand-binding domains of the β2-adrenergic receptor. The expectation was that the chimera would be sensitive both to drug-mediated activation and blockade, thereby circumventing the problem of purifying soluble and active Wnt ligand to activate Frizzled. Expression of the chimera in zebrafish embryos demonstrated isoproterenol (ISO)-stimulated, propranolol-sensitive calcium transients, thereby confirming the β-adrenergic nature of Wnt signaling by the chimeric receptor. Because F9 embryonic teratocarcinoma cells form primitive endoderm after stable transfection of Frizzled-2 chimera and stimulation with ISO, they were subject to depletion of G protein subunits. ISO stimulation of endoderm formation of F9 stem cells expressing the chimeric receptor was blocked by pertussis toxin and by oligodeoxynucleotide antisense to Gαo, Gαt2, and Gβ2. Our results demonstrate the requirement of two pertussis toxin-sensitive G proteins, Gαo and Gαt, for signaling by the Frizzled-2 receptor.
Resumo:
In shark heart, the Na+–Ca2+ exchanger serves as a major pathway for both Ca2+ influx and efflux, as there is only rudimentary sarcoplasmic reticulum in these hearts. The modulation of the exchanger by a β-adrenergic agonist in whole-cell clamped ventricular myocytes was compared with that of the Na+–Ca2+ exchanger blocker KB-R7943. Application of 5 μM isoproterenol and 10 μM KB-R7943 suppressed both the inward and the outward Na+–Ca2+ exchanger current (INa−Ca). The isoproterenol effect was mimicked by 10 μM forskolin. Isoproterenol and forskolin shifted the reversal potential (Erev) of INa−Ca by approximately −23 mV and −30 mV, respectively. An equivalent suppression of outward INa−Ca by KB-R7943 to that by isoproterenol produced a significantly smaller shift in Erev of about −4 mV. The ratio of inward to outward exchanger currents was also significantly larger in isoproterenol- than in control- and KB-R7943-treated myocytes. Our data suggest that the larger ratio of inward to outward exchanger currents as well as the larger shift in Erev with isoproterenol results from the enhanced efficacy of Ca2+ efflux via the exchanger. The protein kinase A-mediated bimodal regulation of the exchanger in parallel with phosphorylation of the Ca2+ channel and enhancement of its current may have evolved to satisfy the evolutionary needs for accelerated contraction and relaxation in hearts of animals with vestigial sarcoplasmic Ca2+ release stores.
Resumo:
gamma-aminobutyric acid type A (GABAA) receptors are the major sites of fast synaptic inhibition in the brain. They are constructed from four subunit classes with multiple members: alpha (1-6), beta (1-4), gamma (1-4), and delta (1). The contribution of subunit diversity in determining receptor subcellular targeting was examined in polarized Madin-Darby canine kidney (MDCK) cells. Significant detection of cell surface homomeric receptor expression by a combination of both immunological and electrophysiological methodologies was only found for the beta 3 subunit. Expression of alpha/beta binary combinations resulted in a nonpolarized distribution for alpha 1 beta 1 complexes, but specific basolateral targeting of both alpha 1 beta 2 and alpha 1 beta 3 complexes. The polarized distribution of these alpha/beta complexes was unaffected by the presence of the gamma 2S subunit. Interestingly, delivery of receptors containing the beta 3 subunit to the basolateral domain occurs via the apical surface. These results show that beta subunits can selectively target GABAA receptors to distinct cellular locations. Changes in the spatial and temporal expression of beta-subunit isoforms may therefore provide a mechanism for relocating GABAA receptor function between distinct neuronal domains. Given the critical role of these receptors in mediating synaptic inhibition, the contribution of different beta subunits in GABAA receptor function, may have implications in neuronal development and for receptor localization/clustering.