953 resultados para Benzil-amino-purina (BAP)
Resumo:
The crystal structures of five model peptides Piv-Pro-Gly-NHMe (1), Piv-Pro-beta Gly-NHMe (2), Piv-Pro-beta Gly-OMe (3), Piv-Pro-delta Ava-OMe (4) and Boc-Pro-gamma Abu-OH (5) are described (Piv:pivaloyl; NHMe: N-methylamide; beta Gly:beta-glycine; OMe:O-methyl ester; delta Ava:delta-aminovaleric acid; gamma Abu:gamma-aminobutyric acid). A comparison of the structures of peptides 1 and 2 illustrates the dramatic consequences upon backbone homologation in short sequences. 1 adopts a type II beta-turn conformation in the solid state, while in 2, the molecule adopts an open conformation with the beta-residue being fully extended. Piv-Pro-beta Gly-OMe (3), which differs from 2 by replacement of the C-terminal NH group by an O-atom, adopts an almost identical molecular conformation and packing arrangement in the solid state. In peptide 4, the observed conformation resembles that determined for 2 and 3, with the delta Ava residue being fully extended. In peptide 5, the molecule undergoes a chain reversal, revealing a beta-turn mimetic structure stabilized by a C-H center dot center dot center dot O hydrogen bond.
Resumo:
Heterocyclic urea derivatives play an important role as anticancer agents because of their good inhibitory activity against receptor tyrosine kinases (RTKs), raf kinases, protein tyrosine kinases (PTKs), and NADH oxidase, which play critical roles in many aspects of tumorigenesis. Benzothiazole moiety constitutes an important scaffold of drugs, possessing several pharmacological functions, mainly the anticancer activity. Based on these interesting properties of benzothiazoles and urea moiety to obtain new biologically active agents, we synthesized a series of novel 1-((S)-2-amino-4,5,6.7-tetrahydrobenzo[d]thiazol-6-yl)-3-(substituted phenyl)urea derivatives and evaluated for their efficacy as antileukemic agents against two human leukemic cell lines (K562 and Reh). These compounds showed good and moderate cytotoxic effect to cancer cell lines tested. Compounds with electron-withdrawing chloro and fluoro substituents on phenyl ring showed good activity and compounds with electron-donating methoxy group showed moderate activity. Compound with electron-withdrawing dichloro substitution on phenyl ring of aryl urea showed good activity. Further, lactate dehydrogenase (LDH) assay, flow cytometric analysis of annexin V-FITC/propidium iodide (PI) double staining and DNA fragmentation studies showed that compound with dichloro substitution on phenyl ring of aryl urea can induce apoptosis.
Resumo:
Amination reactions of 2,6-bis(primary amino)cyclotetraphosphazenes yield not only the expected (amino)cyclotetraphosphazenes but also novel trans-annular bridged bicyclic phosphazenes by an intramolecular substitution pathway. In addition, resins are formed in some reactions by an intermolecular condensation. The effect of substituents attached to the phosphazene ring, the attacking nucleophile and solvent on the formation of the trans-annular P-N-P bridge is considered in detail in relation to plausible reaction mechanisms. Analytical separation of bicyclic phosphazenes by high performance liquid chromatography (HPLC) on a reverse phase silica column is demonstrated. Structural features of bicyclic phosphazenes and salient aspects of their NVR spectroscopic data are discussed.
Resumo:
Isoselenocyanates derived from Boc/Z-amino acids are prepared by the reaction of the corresponding isonitriles with selenium powder in presence of triethylamine at reflux. The utility of these new classes of isoselenocyanates in the preparation of selenoureidodipeptidomimetics possessing both amino as well as carboxy termini has been accomplished. The H-1 NMR analysis confirmed that the protocol involving the conversion of isonitriles to isoselenocyanates and their use as coupling agents in assembling selenour-eido derivatives is free from racemization. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The angiospermous plant parasite Cuscuta derives reduced carbon and nitrogen compounds primarily from its host. Free amino acids along Cuscuta vines in three zones, viz., 0 to 5 cm, 5 to 15 cm, and 15 to 30 cm, which in a broad sense represent the region of cell division, cell elongation and differentiation and vascular tissue differentiation respectively, were quantitatively estimated. The free amino acid content was the highest in the 0 to 5 cm region and progressively decreased along the posterior regions of the vine. The haustorial region showed the lowest content of free amino acids. In general, the free amino acid content in samples collected at 7 p.m. was found to be higher than that in the samples collected at 7 a.m. Three basic amino acids, histidine, the uncommon amino acid γ-hydroxyarginine, and arginine constituted more than 50% of the total free amino acids in all the zones studied except the haustorial region. Aspartic acid and glutamic acid constituted the major portion in the acidic and neutral fraction of amino acids. Glutamine, asparagine, threonine, and serine were eluted together and occurred in substantial amounts. γ-Hydroxyarginine constituted the largest fraction in the cut end exudate of Cuscuta and presumably appeared to be the major form of transport amino acid. γ-Hydroxyarginine was also a major constituent of the basic amino acids in Cuscuta vines parasitizing host plants from widely separated families, suggesting that this amino acid is a biosynthetic product of the parasite rather than that of the hosts. Also, U-14C arginine was converted to γ-hydroxyarginine by cut Cuscuta vines, suggesting that γ-hydroxyarginine is synthesized de novo from arginine by Cuscuta.
Resumo:
Consanguineous marriages are strongly favoured among the peoples of South India. Because of the potential genetic risks resulting from inbreeding, a neonatal screening project was established in 1980 in the state of Karnataka for the identification of amino acidaemias. To date, blood samples obtained by toe-stab from 98,256 neonates have been tested by thin layer chromatography, with 46 single and 70 general amino acidaemias detected. The coefficients of inbreeding (F) for the two groups of neonates were 0.0336 and 0.0350, by comparison with a previously determined F value for the general, new-born population of 0.0298. The most common single abnormality detected was tyrosinaemia, with spontaneous resolution in the majority of cases.
Resumo:
L-Lysine D-glutamate crystallizes in the monoclinic space group P2(1) with a = 4.902, b = 30.719, c = 9.679 A, beta = 90 degrees and Z = 4. The crystals of L-lysine D-aspartate monohydrate belong to the orthorhombic space group P2(1)2(1)2(1) with a = 5.458, b = 7.152, c = 36.022 A and Z = 4. The structures were solved by the direct methods and refined to R values of 0.125 and 0.040 respectively for 1412 and 1503 observed reflections. The glutamate complex is highly pseudosymmetric. The lysine molecules in it assume a conformation with the side chain staggered between the alpha-amino and the alpha-carboxylate groups. The interactions of the side chain amino groups of lysine in the two complexes are such that they form infinite sequences containing alternating amino and carboxylate groups. The molecular aggregation in the glutamate complex is very similar to that observed in L-arginine D-aspartate and L-arginine D-glutamate trihydrate, with the formation of double layers consisting of both types of molecules. In contrast to the situation in the other three LD complexes, the unlike molecules in L-lysine D-aspartate monohydrate aggregate into alternating layers as in the case of most LL complexes. The arrangement of molecules in the lysine layer is nearly the same as in L-lysine L-aspartate, with head-to-tail sequences as the central feature. The arrangement of aspartate ions in the layers containing them is, however, somewhat unusual. Thus the comparison between the LL and the LD complexes analyzed so far indicates that the reversal of chirality of one of the components in a complex leads to profound changes in molecular aggregation, but these changes could be of more than one type.
Resumo:
The mechanism of interaction of 0-amino-D-serine (OADS) with sheep liver serine hydroxymethyltransferase (EC 2.1.2.1) (SHMT) was established by measuring changes in the enzyme activity,absorption spectra, circular dichroism (CD) spectra, and stopped-flow spectrophotometry. OADS was a reversible noncompetitive inhibitor (Ki = 1.8 pM) when serine was the varied substrate. The first step in the interaction of OADS with the enzyme was the disruption of enzyme-Schiff base, characterized by the rapid disappearance of absorbance at 425 nm (6.5 X lo3 M-' s-') and CD intensity at 430 nm. Concomitantly,there was a rapid increase in absorbance and CD intensity at 390 nm. The spectral properties of this intermediate enabled its identification as pyridoxal 5'-phosphate (PLP). These changes were followed by a slow unimolecular step (2 X s-') leading to the formation of PLP-OADS oxime, which was confirmed by its absorbance and fluorescence spectra and retention time on high-performance liquid chromatography. The PLP-OADS oxime was displaced from the enzyme by the addition of PLP as evidenced by the restoration of complete enzyme activity as well as by the spectral properties. The unique feature of the mechanism proposed for the interaction of OADS with sheep liver SHMT was the formation of PLP as an intermediate.