926 resultados para Bees - Foraging behaviour
Resumo:
Bumblebee species declines have been reported in Europe, North America and Asia. Loss of suitable habitat to agricultural intensification is considered to be the main cause of declines in Europe. Differential impacts on species have been recorded but insufficient knowledge of species ecology means that effective conservation management prescriptions cannot be put into place with certainty. Dietary specialisation, specifically on flowers of Fabaceae, has been hypothesised as driving differential declines but the reliability of previous studies has been questioned. Here we present a three-year study of the foraging behaviour of two UK Biodiversity Action Plan bumblebee species. For the first time, analysis of nectar and pollen foraging was performed on sites where nationally rare UK bumblebees were as abundant as more nationally ubiquitous species. Results indicated that the nationally rare Bombus sylvarum collected the majority of its pollen from flowers of Odontites verna and had a significantly narrower mean nectar dietary breadth than ecologically similar species Bombus humilis and Bombus pascuorum (p = 0.004 and 0.008 respectively). In contrast, the dietary breadth of the nationally rare B. humilis was similar to the more nationally ubiquitous species B. pascuorum and Bombus lapidarius. Moreover, B. lapidarius was recorded as having the narrowest pollen dietary breadth, collected pollen from the least number of floral taxa and was the most specialised of the Bombus species on pollen of Fabaceae. Patterns of dietary specialization were inconsistent with national declines and results highlighted a need for further detailed investigation into the factors contributing to differential declines.
Resumo:
Bulwer'spetrelsarenocturnalseabirdsthatmostlypreyonmesopelagicfauna.Asaerialforagersand shallowdivers,theirfeedingopportunitiesarelimitedbynear-surfaceavailabilityoftheirprey,whichis highlyvariablebothtemporally(reflectingdiurnalandlunarcycles)andspatially.Herewestudiedhow Bulwer'spetrelscopewiththeseconstraintsbyanalysingtheirat-seadistributionandactivityduringthe incubationperiod.Wetrackedthemovementsof20birdsfromSelvagemGrande(NEAtlantic)duringa completelunarcycle,andrecorded30foragingtripsthatlasted11daysonaverage.Birdswereboth distributedaroundthecolonyandinwatersclosetotheAzoreanarchipelago(mid-Atlantic)located 1700kmaway,andweresignificantlymoreactiveatnight(especiallyjustaftersunsetandbeforesunrise), whenmesopelagicfaunaisalsoclosertotheseasurfaceduetotheirdielverticalmigrations.Bulwer's petrelsspentsignificantlymoretime flyingduringmoonlight,althoughtheeffectofthemoonwasrela- tivelyweak(ca.10–15%differencebetweenmoonlitanddarkperiodsofthenight),andnotobviouswhen birdswereforaginginmid-Atlanticwaters,whichwerealsotargetedmoreoftenduringfull-moon.These resultsrevealkeyadaptationsoftheBulwer'spetreltothehighlydynamicecologyofitsmesopelagicprey.
Resumo:
Etmopterus spinax is one of the most abundant predators of the upper continental slope off the Algarve (southern Portugal), where it is captured in large quantities in deep-water fisheries. The feeding habits of E. spinax off the Algarve were investigated through the analysis of stomach contents of 376 individuals. Prey composition was described and maturity, sex and size related variations in the diet analysed. The overall diet of E. spinax suggested a fairly generalized benthopelagic foraging behaviour primarily tuned to pelagic macroplankton/microneckton, teleost fish and cephalopods. Sex and maturity related differences in the diet were not significant. Two main ontogenic diet shifts were observed at about 17 and 28 cm total length. Small and medium sized immature sharks had a diet dominated by eurybathic crustaceans, chiefly Meganyctiphanes norvegica and Pasiphaea sivado. Larger individuals consumed more teleosts and cephalopods, in part associated with scavenging as a new feeding strategy. With increasing shark size the diet diversified both in terms of resources exploited and prey size.
Resumo:
Collision with vehicles is an important source of bird mortality, but it is uncertain why some species are killed more often than others. Focusing on passerines,we testedwhether mortality is associated with bird abundances, and with traits reflecting flight manoeuvrability, habitat, diet, and foraging and social behaviours. We also tested whether the species most vulnerable to road-killing were scarcer near (b500 m) or far (N500–5000 m) from roads. During the breeding seasons of 2009–2011,we surveyed roadkills daily along 50 km of roads, and estimated bird abundances from 74 point counts. After correcting for phylogenetic relatedness, there was strong correlation between roadkill numbers and the abundances of 28 species counted near roads. However, selectivity indices indicated that Blue tit (Parus caeruleus), Blackcap (Sylvia atricapilla) and European goldfinch (Carduelis carduelis) were significantly more road-killed than expected from their abundances, while the inverse was found for seven species. Using phylogenetic generalised estimating equations, we found that selectivity indexes were strongly related to foraging behaviour and habitat type, and weakly so to body size, wing load, diet and social behaviour. The most vulnerable passerines were foliage/bark and swoop foragers, inhabiting woodlands, with small body size and low wing load. The species most vulnerable to road collisions were not scarcer close to roads. Overall, our study suggests that traits provide a basis to identify the passerine species most vulnerable to road collisions, which may be priority targets for future research on the population-level effects of roadkills.
Resumo:
Report of field observations April 2007 to September 2011
Resumo:
Considerable interspecific diversity exists among bees in the rendezvous sites where males search for females and in the behaviours employed by males in their efforts to secure matings. I present an evolutionary framework in which to interpret this variation, and highlight the importance for the framework of (i) the distribution of receptive ( typically immediate post-emergence) females, which ordinarily translates into the distribution of nests, and (ii) the density of competing males. Other than the highly polyandrous honey bees ( Apis), most female bees are thought to be monandrous, though genetic data with which to support this view are generally lacking. Given the opportunity, male bees are typically polygamous. I highlight intraspecific diversity in rendezvous site, male behaviour and mating system, which is in part predicted from the conceptual framework. Finally, I suggest that inbreeding may be far more widespread among bees than has hitherto been considered the case.
Resumo:
The objective of the present study was to investigate the relationship between rooting behaviour and foraging in growing pigs. In study 1, forty-eight 11-week-old pigs were housed in eight groups of six with access to a rooting substrate in the form of spent mushroom compost. In half of the groups the rooting substrate contained food rewards, and in the other half of the groups it did not. All pigs had ad libitum access to feed. In study 2, one hundred and ninety-two 11-week-old pigs were housed in thirty-two groups of six, all with access to spent mushroom compost, and eight groups were each fed to 70, 80, 90 or 100% appetite. Treatments were applied over a two-week period in both studies. The number of pigs involved in active rooting (rooting in substrate while standing), inactive rooting (rooting in substrate while sitting or lying) or non-rooting activity (standing in substrate area and involved in any activity except rooting) was recorded by scan sampling. These behaviours tended to reach a peak in the morning and again in the afternoon. Inactive rooting was not significantly affected by treatments in study I or study 2. Food rewards in the rooting substrate led to a significant reduction in active rooting behaviour and in non-rooting activity during peak periods of the day (P
Resumo:
Anthropogenic noise can affect behaviour across a wide range of species in both terrestrial and aquatic environments. However, behaviours might not be affected in isolation. Therefore, a more holistic approach investigating how environmental stressors, such as noise pollution, affect different behaviours in concert is necessary. Using tank-based noise exposure experiments, we tested how changes in the acoustic environment affect the behaviour of the cichlid Amatitlania nigrofasciata. We found that exposure to anthropogenic noise affected a couple of behaviours: an increase in sheltering was accompanied by a decrease in foraging. Our results highlight the multiple negative effects of an environmental stressor on an individual's behaviour.
Resumo:
Large carpenter bees (Hymenoptera: Apidae: Xylocopa) have traditionally been thought of as exhibiting solitary or occasionally communal colony social organization. However, studies have demonstrated more complex fonns of social behaviour in this genus. In this document, I examine elements ofbehaviour and life history in a North American species at the northern extreme of its range. Xylocopa virginica was found to be socially polymorphic with both solitary and meta-social or semi-social nests in the same population. In social nests, there is no apparent benefit from additional females which do not perfonn significant work or guarding. I found that the timing of life-history events varies between years, yet foraging effort only differed in the coldest and wettest year of2004 the study. Finally, I that male X virginica exhibit female defence polygyny, with resident and satellite males. Resident males maintain their territories through greater aggression relative to satellites.
Resumo:
Many arthropods exhibit behaviours precursory to social life, including adult longevity, parental care, nest loyalty and mutual tolerance, yet there are few examples of social behaviour in this phylum. The small carpenter bees, genus Ceratina, provide important insights into the early stages of sociality. I described the biology and social behaviour of five facultatively social species which exhibit all of the preadaptations for successful group living, yet present ecological and behavioural characteristics that seemingly disfavour frequent colony formation. These species are socially polymorphic with both / solitary and social nests collected in sympatry. Social colonies consist of two adult females, one contributing both foraging and reproductive effort and the second which remains at the nest as a passive guard. Cooperative nesting provides no overt reproductive benefits over solitary nesting, although brood survival tends to be greater in social colonies. Three main theories explain cooperation among conspecifics: mutual benefit, kin selection and manipulation. Lifetime reproductive success calculations revealed that mutual benefit does not explain social behaviour in this group as social colonies have lower per capita life time reproductive success than solitary nests. Genetic pedigrees constructed from allozyme data indicate that kin selection might contribute to the maintenance of social nesting -, as social colonies consist of full sisters and thus some indirect fitness benefits are inherently bestowed on subordinate females as a result of remaining to help their dominant sister. These data suggest that the origin of sociality in ceratinines has principal costs and the great ecological success of highly eusociallineages occurred well after social origins. Ecological constraints such as resource limitation, unfavourable weather conditions and parasite pressure have long been considered some of the most important selective pressures for the evolution of sociality. I assessed the fitness consequences of these three ecological factors for reproductive success of solitary and social colonies and found that nest sites were not limiting, and the frequency of social nesting was consistent across brood rearing seasons. Local weather varied between seasons but was not correlated with reproductive success. Severe parasitism resulted in low reproductive success and total nest failure in solitary nests. Social colonies had higher reproductive success and were never extirpated by parasites. I suggest that social nesting represents a form of bet-hedging. The high frequency of solitary nests suggests that this is the optimal strategy when parasite pressure is low. However, social colonies have a selective advantage over solitary nesting females during periods of extreme parasite pressure. Finally, the small carpenter bees are recorded from all continents except Antarctica. I constructed the first molecular phylogeny of ceratinine bees based on four gene regions of selected species covering representatives from all continents and ecological regions. Maximum parsimony and Bayesian Inference tree topology and fossil dating support an African origin followed by an Old World invasion and New World radiation. All known Old World ceratinines form social colonies while New World species are largely solitary; thus geography and phylogenetic inertia are likely predictors of social evolution in this genus. This integrative approach not only describes the behaviour of several previously unknown or little-known Ceratina species, bu~ highlights the fact that this is an important, though previously unrecognized, model for studying evolutionary transitions from solitary to social behaviour.
Resumo:
Competition for floral resources is a key force shaping pollinator communities, particularly among social bees. The ability of social bees to recruit nestmates for group foraging is hypothesized to be a major factor in their ability to dominate rich resources such as mass-flowering trees. We tested the role of group foraging in attaining dominance by stingless bees, eusocial tropical pollinators that exhibit high diversity in foraging strategies. We provide the first experimental evidence that meliponine group foraging strategies, large colony sizes and aggressive behavior form a suite of traits that enable colonies to improve dominance of rich resources. Using a diverse assemblage of Brazilian stingless bee species and an array of artificial ""flowers"" that provided a sucrose reward, we compared species` dominance and visitation under unrestricted foraging conditions and with experimental removal of group-foraging species. Dominance does not vary with individual body size, but rather with foraging group size. Species that recruit larger numbers of nestmates (Scaptotrigona aff. depilis, Trigona hyalinata, Trigona spinipes) dominated both numerically (high local abundance) and behaviorally (controlling feeders). Removal of group-foraging species increased feeding opportunities for solitary foragers (Frieseomelitta varia, Melipona quadrifasciata and Nannotrigona testaceicornis). Trigona hyalinata always dominated under unrestricted conditions. When this species was removed, T. spinipes or S. aff. depilis controlled feeders and limited visitation by solitary-foraging species. Because bee foraging patterns determine plant pollination success, understanding the forces that shape these patterns is crucial to ensuring pollination of both crops and natural areas in the face of current pollinator declines.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this study, the daily and seasonal influences of abiotic factors and the amount of floral resources on the foraging frequency of bees were determined. The experiments were performed, during 12 consecutive months, in the main floral sources used by bees in a secondary forest fragment. The foraging frequency of each bee species on flowers of each plant was recorded for 20-min periods, every hour. To verify whether the foraging activity is influenced by abiotic factors, Pearson's correlation analysis and linear regression tests were performed for the dominant bee species. Temperature and luminosity were the two main abiotic factors regulating foraging activities of bees. A positive correlation was found between the foraging frequency of most bees and these two variables. Conversely, the foraging activity was influenced neither by the relative humidity nor by the wind speed. The activity of each species depends on a combination of factors that include not only abiotic variables, but also the amount of floral resources available during the day, body size, and behavior of each visitor. After a certain period of the day, the scarcity of floral resources produced by most plants can stimulate the bees to forage in the flowers early in subsequent days, which may occur before the period in which the abiotic conditions are really favorable.
Resumo:
Decision making in honeybees is based on in- formation which is acquired and processed in order to make choices between two or more al- ternatives. These choices lead to the expression of optimal behaviour strategies such as floral constancy. Optimal foraging strategies such as floral constancy improve a colony’s chances of survival, however to our knowledge, there has been no research on decision making based on optimal storage strategies. Here we show, using diagnostic radioentomology, that decision mak- ing in storer bees is influenced by nectar sugar concentrations and that, within 48 hours of col- lection, honeybees workers store carbohydrates in groups of cells with similar sugar concentra- tions in a nonrandom way. This behaviour, as evidenced by patchy spatial cell distributions, would help to hasten the ripening process by reducing the distance between cells of similar sugar concentrations. Thus, colonies which ex- hibit optimal storage strategies such as these would have an evolutionary advantage and im- prove colony survival expectations over less efficient colonies and it should be plausible to select colonies that exhibit these preferred traits.
Resumo:
Diachasmimorpha kraussii (Hymenoptera: Braconidae: Opiinae) is a koinobiont larval parasitoid of dacine fruit flies of the genus Bactrocera (Diptera: Tephritidae) in its native range (Australia, Papua New Guinea, Solomon Islands). The wasp is a potentially important control agent for pest fruit flies, having been considered for both classical and inundative biological control releases. I investigated the host searching, selection and utilisation mechanisms of the wasp against native host flies within its native range (Australia). Such studies are rare in opiine research where the majority of studies, because of the applied nature of the research, have been carried out using host flies and environments which are novel to the wasps. Diachasmimorpha kraussii oviposited equally into maggots of four fruit fly species, all of which coexist with the wasp in its native range (Australia), when tested in a choice trial using a uniform artificial diet media. While eggs laid into Bactrocera tryoni and B. jarvisi developed successfully through to adult wasps, eggs laid into B. cucumis and B. cacuminata were encapsulated. These results suggest that direct larval cues are not an important element in host selection by D. kraussii. Further exploring how D. kraussii locates suitable host larvae, I investigated the role of plant cues in host searching and selection. This was examined in a laboratory choice trial using uninfested fruit or fruit infested with either B. tryoni or B. jarvisi maggots. The results showed a consistent preference ranking among infested fruits by the wasp, with guava and peach most preferred, but with no response to uninfested fruits. Thus, it appears the wasp uses chemical cues emitted in response to fruit fly larval infestation for host location, but does not use cues from uninfested fruits. To further tease apart the role of (i) suitable and non-suitable maggots, (ii) infested and uninfested fruits of different plant species, and (iii) adult flies, in wasp host location and selection, I carried out a series of behavioural tests where I manipulated these attributes in a field cage. These trials confirmed that D. kraussii did not respond to cues in uninfested fruits, that there were consistent preferences by the wasps for different maggot infested fruits, that fruit preference did not vary depending on whether the maggots were physiologically suitable or not suitable for wasp offspring development, and finally, that adult flies appear to play a secondary role as indicators of larval infestation. To investigate wasp behaviour in an unrestrained environment, I concurrently observed diurnal foraging behaviours of both the wasp and one of its host fly in a small nectarine orchard. Wasp behaviour, both spatially and temporally, was not correlated with adult fruit fly behaviour or abundance. This study reinforced the point that infested fruit seems to be the primary cue used by foraging wasps. Wasp and fly feeding and mating was not observed in the orchard, implying these activities are occurring elsewhere. It is highly unlikely that these behaviours were happening within the orchard during the night as both insects are diurnal. As the final component of investigating host location, I carried out a habitat preference study for the wasp at the landscape scale. Using infested sentinel fruits, I tested the parasitism rate of B. tryoni in eucalyptus sclerophyll forest, rainforest and suburbia in South East Queensland. Although, rainforest is the likely endemic habitat of both B. tryoni and D. kraussii, B. tryoni abundance is significantly greater in suburban environments followed by eucalyptus sclerophyll forest. Parasitism rate was found to be higher in suburbia than in the eucalyptus sclerophyll forest, while no parasitism was recorded in the rainforest. This result suggests that wasps orient within the landscape towards areas of high host density and are not restricted by habitat types. Results from the different experiments suggest that host searching, selection and utilisation behaviour of D. kraussii are strongly influenced by cues associated with fruit fly larval feeding. Cues from uninfested fruits, the host larvae themselves, and the adult host flies play minimal roles. The discussion focuses on the fit of D. kraussii to Vinson’s classical parasitoid host location model and the implications of results for biological control, including recommendations for host and plant preference screening protocols and release regimes.