898 resultados para Bayesian shared component model
Resumo:
This paper proposes Poisson log-linear multilevel models to investigate population variability in sleep state transition rates. We specifically propose a Bayesian Poisson regression model that is more flexible, scalable to larger studies, and easily fit than other attempts in the literature. We further use hierarchical random effects to account for pairings of individuals and repeated measures within those individuals, as comparing diseased to non-diseased subjects while minimizing bias is of epidemiologic importance. We estimate essentially non-parametric piecewise constant hazards and smooth them, and allow for time varying covariates and segment of the night comparisons. The Bayesian Poisson regression is justified through a re-derivation of a classical algebraic likelihood equivalence of Poisson regression with a log(time) offset and survival regression assuming piecewise constant hazards. This relationship allows us to synthesize two methods currently used to analyze sleep transition phenomena: stratified multi-state proportional hazards models and log-linear models with GEE for transition counts. An example data set from the Sleep Heart Health Study is analyzed.
Resumo:
BACKGROUND Several treatment strategies are available for adults with advanced-stage Hodgkin's lymphoma, but studies assessing two alternative standards of care-increased dose bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisone (BEACOPPescalated), and doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD)-were not powered to test differences in overall survival. To guide treatment decisions in this population of patients, we did a systematic review and network meta-analysis to identify the best initial treatment strategy. METHODS We searched the Cochrane Library, Medline, and conference proceedings for randomised controlled trials published between January, 1980, and June, 2013, that assessed overall survival in patients with advanced-stage Hodgkin's lymphoma given BEACOPPbaseline, BEACOPPescalated, BEACOPP variants, ABVD, cyclophosphamide (mechlorethamine), vincristine, procarbazine, and prednisone (C[M]OPP), hybrid or alternating chemotherapy regimens with ABVD as the backbone (eg, COPP/ABVD, MOPP/ABVD), or doxorubicin, vinblastine, mechlorethamine, vincristine, bleomycin, etoposide, and prednisone combined with radiation therapy (the Stanford V regimen). We assessed studies for eligibility, extracted data, and assessed their quality. We then pooled the data and used a Bayesian random-effects model to combine direct comparisons with indirect evidence. We also reconstructed individual patient survival data from published Kaplan-Meier curves and did standard random-effects Poisson regression. Results are reported relative to ABVD. The primary outcome was overall survival. FINDINGS We screened 2055 records and identified 75 papers covering 14 eligible trials that assessed 11 different regimens in 9993 patients, providing 59 651 patient-years of follow-up. 1189 patients died, and the median follow-up was 5·9 years (IQR 4·9-6·7). Included studies were of high methodological quality, and between-trial heterogeneity was negligible (τ(2)=0·01). Overall survival was highest in patients who received six cycles of BEACOPPescalated (HR 0·38, 95% credibility interval [CrI] 0·20-0·75). Compared with a 5 year survival of 88% for ABVD, the survival benefit for six cycles of BEACOPPescalated is 7% (95% CrI 3-10)-ie, a 5 year survival of 95%. Reconstructed individual survival data showed that, at 5 years, BEACOPPescalated has a 10% (95% CI 3-15) advantage over ABVD in overall survival. INTERPRETATION Six cycles of BEACOPPescalated significantly improves overall survival compared with ABVD and other regimens, and thus we recommend this treatment strategy as standard of care for patients with access to the appropriate supportive care.
Resumo:
BACKGROUND An increasing number of childhood cancer survivors need long-term follow-up care. Different models address this problem, including that of follow-up by general practitioners (GP). We describe models that involve GPs in follow-up for childhood cancer survivors, their advantages and disadvantages, clinics that employ these models, and the elements essential to high-quality, GP-led follow-up care. PROCEDURE We searched four databases (PubMed [including Medline], Embase, Cochrane, and CINAHL) without language restrictions. RESULTS We found 26 publications, which explicitly mentioned GP-led follow-up. Two models were commonly described: GP-only, and shared care between GP and pediatric oncology or late effects clinic. The shared care model appears to have advantages over GP-only follow-up. We found four clinics using models of GP-led follow-up, described in five papers. We identified well-organized transition, treatment summary, survivorship care plan, education of GPs and guidelines as necessary components of successful follow-up. CONCLUSION Scarcity of literature necessitated a review rather than a meta-analysis. More research on the outcomes of GP-led care is necessary to confirm the model for follow-up of childhood cancer survivors in the long term. However, with the necessary elements in place, the model of GP-led follow-up, and shared care in particular, holds promise.
Resumo:
BACKGROUND Pathology studies have shown delayed arterial healing in culprit lesions of patients with acute coronary syndrome (ACS) compared with stable coronary artery disease (CAD) after placement of drug-eluting stents (DES). It is unknown whether similar differences exist in-vivo during long-term follow-up. Using optical coherence tomography (OCT), we assessed differences in arterial healing between patients with ACS and stable CAD five years after DES implantation. METHODS AND RESULTS A total of 88 patients comprised of 53 ACS lesions with 7864 struts and 35 stable lesions with 5298 struts were suitable for final OCT analysis five years after DES implantation. The analytical approach was based on a hierarchical Bayesian random-effects model. OCT endpoints were strut coverage, malapposition, protrusion, evaginations and cluster formation. Uncovered (1.7% vs. 0.7%, adjusted p=0.041) or protruding struts (0.50% vs. 0.13%, adjusted p=0.038) were more frequent among ACS compared with stable CAD lesions. A similar trend was observed for malapposed struts (1.33% vs. 0.45%, adj. p=0.072). Clusters of uncovered or malapposed/protruding struts were present in 34.0% of ACS and 14.1% of stable patients (adj. p=0.041). Coronary evaginations were more frequent in patients with ST-elevation myocardial infarction compared with stable CAD patients (0.16 vs. 0.13 per cross section, p=0.027). CONCLUSION Uncovered, malapposed, and protruding stent struts as well as clusters of delayed healing may be more frequent in culprit lesions of ACS compared with stable CAD patients late after DES implantation. Our observational findings suggest a differential healing response attributable to lesion characteristics of patients with ACS compared with stable CAD in-vivo.
Resumo:
When tilted sideways participants misperceive the visual vertical assessed by means of a luminous line in otherwise complete dark- ness. A recent modeling approach (De Vrijer et al., 2009) claimed that these typical patterns of errors (known as A- and E-effects) could be explained by as- suming that participants behave in a Bayes optimal manner. In this study, we experimentally manipulate participants’ prior information about body-in-space orientation and measure the effect of this manipulation on the subjective visual vertical (SVV). Specifically, we explore the effects of veridical and misleading instructions about body tilt orientations on the SVV. We used a psychophys- ical 2AFC SVV task at roll tilt angles of 0 degrees, 16 degrees and 4 degrees CW and CCW. Participants were tilted to 4 degrees under different instruction conditions: in one condition, participants received veridical instructions as to their tilt angle, whereas in another condition, participants received the mis- leading instruction that their body position was perfectly upright. Our results indicate systematic differences between the instruction conditions at 4 degrees CW and CCW. Participants did not simply use an ego-centric reference frame in the misleading condition; instead, participants’ estimates of the SVV seem to lie between their head’s Z-axis and the estimate of the SVV as measured in the veridical condition. All participants displayed A-effects at roll tilt an- gles of 16 degrees CW and CCW. We discuss our results in the context of the Bayesian model by De Vrijer et al. (2009), and claim that this pattern of re- sults is consistent with a manipulation of precision of a prior distribution over body-in-space orientations. Furthermore, we introduce a Bayesian Generalized Linear Model for estimating parameters of participants’ psychometric function, which allows us to jointly estimate group level and individual level parameters under all experimental conditions simultaneously, rather than relying on the traditional two-step approach to obtaining group level parameter estimates.
Resumo:
Nuclear morphometry (NM) uses image analysis to measure features of the cell nucleus which are classified as: bulk properties, shape or form, and DNA distribution. Studies have used these measurements as diagnostic and prognostic indicators of disease with inconclusive results. The distributional properties of these variables have not been systematically investigated although much of the medical data exhibit nonnormal distributions. Measurements are done on several hundred cells per patient so summary measurements reflecting the underlying distribution are needed.^ Distributional characteristics of 34 NM variables from prostate cancer cells were investigated using graphical and analytical techniques. Cells per sample ranged from 52 to 458. A small sample of patients with benign prostatic hyperplasia (BPH), representing non-cancer cells, was used for general comparison with the cancer cells.^ Data transformations such as log, square root and 1/x did not yield normality as measured by the Shapiro-Wilks test for normality. A modulus transformation, used for distributions having abnormal kurtosis values, also did not produce normality.^ Kernel density histograms of the 34 variables exhibited non-normality and 18 variables also exhibited bimodality. A bimodality coefficient was calculated and 3 variables: DNA concentration, shape and elongation, showed the strongest evidence of bimodality and were studied further.^ Two analytical approaches were used to obtain a summary measure for each variable for each patient: cluster analysis to determine significant clusters and a mixture model analysis using a two component model having a Gaussian distribution with equal variances. The mixture component parameters were used to bootstrap the log likelihood ratio to determine the significant number of components, 1 or 2. These summary measures were used as predictors of disease severity in several proportional odds logistic regression models. The disease severity scale had 5 levels and was constructed of 3 components: extracapsulary penetration (ECP), lymph node involvement (LN+) and seminal vesicle involvement (SV+) which represent surrogate measures of prognosis. The summary measures were not strong predictors of disease severity. There was some indication from the mixture model results that there were changes in mean levels and proportions of the components in the lower severity levels. ^
Resumo:
Temperate C3-grasslands are of high agricultural and ecological importance in Central Europe. Plant growth and consequently grassland yields depend strongly on water supply during the growing season, which is projected to change in the future. We therefore investigated the effect of summer drought on the water uptake of an intensively managed lowland and an extensively managed sub-alpine grassland in Switzerland. Summer drought was simulated by using transparent shelters. Standing above- and belowground biomass was sampled during three growing seasons. Soil and plant xylem waters were analyzed for oxygen (and hydrogen) stable isotope ratios, and the depths of plant water uptake were estimated by two different approaches: (1) linear interpolation method and (2) Bayesian calibrated mixing model. Relative to the control, aboveground biomass was reduced under drought conditions. In contrast to our expectations, lowland grassland plants subjected to summer drought were more likely (43–68 %) to rely on water in the topsoil (0–10 cm), whereas control plants relied less on the topsoil (4–37 %) and shifted to deeper soil layers (20–35 cm) during the drought period (29–48 %). Sub-alpine grassland plants did not differ significantly in uptake depth between drought and control plots during the drought period. Both approaches yielded similar results and showed that the drought treatment in the two grasslands did not induce a shift to deeper uptake depths, but rather continued or shifted water uptake to even more shallower soil depths. These findings illustrate the importance of shallow soil depths for plant performance under drought conditions.
Resumo:
Chrysophyte cysts are recognized as powerful proxies of cold-season temperatures. In this paper we use the relationship between chrysophyte assemblages and the number of days below 4 °C (DB4 °C) in the epilimnion of a lake in northern Poland to develop a transfer function and to reconstruct winter severity in Poland for the last millennium. DB4 °C is a climate variable related to the length of the winter. Multivariate ordination techniques were used to study the distribution of chrysophytes from sediment traps of 37 low-land lakes distributed along a variety of environmental and climatic gradients in northern Poland. Of all the environmental variables measured, stepwise variable selection and individual Redundancy analyses (RDA) identified DB4 °C as the most important variable for chrysophytes, explaining a portion of variance independent of variables related to water chemistry (conductivity, chlorides, K, sulfates), which were also important. A quantitative transfer function was created to estimate DB4 °C from sedimentary assemblages using partial least square regression (PLS). The two-component model (PLS-2) had a coefficient of determination of View the MathML sourceRcross2 = 0.58, with root mean squared error of prediction (RMSEP, based on leave-one-out) of 3.41 days. The resulting transfer function was applied to an annually-varved sediment core from Lake Żabińskie, providing a new sub-decadal quantitative reconstruction of DB4 °C with high chronological accuracy for the period AD 1000–2010. During Medieval Times (AD 1180–1440) winters were generally shorter (warmer) except for a decade with very long and severe winters around AD 1260–1270 (following the AD 1258 volcanic eruption). The 16th and 17th centuries and the beginning of the 19th century experienced very long severe winters. Comparison with other European cold-season reconstructions and atmospheric indices for this region indicates that large parts of the winter variability (reconstructed DB4 °C) is due to the interplay between the oscillations of the zonal flow controlled by the North Atlantic Oscillation (NAO) and the influence of continental anticyclonic systems (Siberian High, East Atlantic/Western Russia pattern). Differences with other European records are attributed to geographic climatological differences between Poland and Western Europe (Low Countries, Alps). Striking correspondence between the combined volcanic and solar forcing and the DB4 °C reconstruction prior to the 20th century suggests that winter climate in Poland responds mostly to natural forced variability (volcanic and solar) and the influence of unforced variability is low.
Anger and fear: Separable effects of emotion and motivational direction on somatovisceral responses.
Resumo:
We studied whether emotion (anger vs. fear) and motivational direction (approach vs. withdrawal) have specific, separable, and independent somatovisceral response patterns. Imagination scripts about soccer game episodes with crossed Emotion x Motivational Direction content resulting in four experimental groups were presented to a total of N = 118 active soccer players. Self-reports reflected the emotion but not the motivational direction induction. Univariate and multivariate analyses of 24 somatovisceral variables and 2 a priori defined summary variables showed that anger and fear had specific response profiles with effect sizes correlating r = 0.53 with the respective effect sizes from a previous study. Approach and withdrawal profiles varied only in intensity. Emotion and motivational direction did not interact and had independent somatovisceral effects. Results suggest that anger and fear have separate underlying neurobiological organizations each capable of bi-directional motivational tuning of efferent pathways. Results support the Component Model of Somatovisceral Response Organization.
Resumo:
Changes in species composition in two 4–ha plots of lowland dipterocarp rainforest at Danum, Sabah, were measured over ten years (1986 to 1996) for trees greater than or equal to 10 cm girth at breast height (gbh). Each included a lower–slope to ridge gradient. The period lay between two drought events of moderate intensity but the forest showed no large lasting responses, suggesting that its species were well adapted to this regime. Mortality and recruitment rates were not unusual in global or regional comparisons. The forest continued to aggrade from its relatively (for Sabah) low basal area in 1986 and, together with the very open upper canopy structure and an abundance of lianas, this suggests a forest in a late stage of recovery from a major disturbance, yet one continually affected by smaller recent setbacks. Mortality and recruitment rates were not related to population size in 1986, but across subplots recruitment was positively correlated with the density and basal area of small trees (10 to <50 cm gbh) forming the dense understorey. Neither rate was related to topography. While species with larger mean gbh had greater relative growth rates (rgr) than smaller ones, subplot mean recruitment rates were correlated with rgr among small trees. Separating understorey species (typically the Euphorbiaceae) from the overstorey (Dipterocarpaceae) showed marked differences in change in mortality with increasing gbh: in the former it increased, in the latter it decreased. Forest processes are centred on this understorey quasi–stratum. The two replicate plots showed a high correspondence in the mortality, recruitment, population changes and growth rates of small trees for the 49 most abundant species in common to both. Overstorey species had higher rgrs than understorey ones, but both showed considerable ranges in mortality and recruitment rates. The supposed trade–off in traits, viz slower rgr, shade tolerance and lower population turnover in the understorey group versus faster potential growth rate, high light responsiveness and high turnover in the overstorey group, was only partly met, as some understorey species were also very dynamic. The forest at Danum, under such a disturbance–recovery regime, can be viewed as having a dynamic equilibrium in functional and structural terms. A second trade–off in shade–tolerance versus drought–tolerance is suggested for among the understorey species. A two–storey (or vertical component) model is proposed where the understorey–overstorey species’ ratio of small stems (currently 2:1) is maintained by a major feedback process. The understorey appears to be an important part of this forest, giving resilience against drought and protecting the overstorey saplings in the long term. This view could be valuable for understanding forest responses to climate change where drought frequency in Borneo is predicted to intensify in the coming decades.
Resumo:
Basement intersected in DSDP holes 525A, 528 and 527 on the Walvis Ridge consists of submarine basalt flows and pillows with minor intercalated sediments. These holes are situated on the crest and mid and lower northwest flank of a NNW-SSE-trending ridge block which would have closely paralleled the paleo mid-ocean ridge (Rabinowitz and LaBrecque, 1979 doi:10.1029/JB084iB11p05973, Moore et al. (1983 doi:10.1130/0016-7606(1983)94<907:TWRTDS>2.0.CO;2). The basalts were erupted approximately 70 m.y. ago, an age equivalent to that of immediately adjacent oceanic crust in the Angola Basin and coraistent with formation at the paleo mid-ocean ridge (Moore et al., 1983). The basalt types vary from aphyric quartz tholeiites on the ridge crest to highly plagioclase phyric olivine tholeiites on the ridge flank. These show systematic differences in incompatible trace element and isotopic composition. Many element and isotope ratio pairs form systematic trends with the ridge crest basalts at one end and the highly phyric ridge flank basalts at the other. The low 143Nd/144Nd (0.51238), 206Pb/204Pb (17.54), 207Pb/204Pb (15.47), 208Pb/204Pb (38.14) and high 87Sr/86Sr (0.70512) ratios of the ridge crest basalts suggest derivation from an old Nd/Sm-, Rb/Sr- and Pb/U-enriched mantle source. This isotopic signature is similar to that of alkaline basalts on Tristan da Cunha but offset to significantly lower Nd and Pb isotopic ratios. The isotopic ratio trends may be extrapolated beyond the ridge flank basalts with higher 143Nd/144Nd (0.51270), 206Pb/204Pb (18.32), 207Pb/204Pb (15.52), 208Pb/204Pb (38.77) and lower 87Sr/86Sr (0.70417) ratios in the direction of increasingly Nd/Sm-, Rb/Sr- and Pb/U-depleted source compositions. These isotopic correlations are equally consistent with mixing of depleted and enriched end member melts or partial melting of an inhomogeneous, variably enriched mantle source. However, observed Zr-Ba-Nb-Y interelement relationships are inconsistent with any simple two-component model of magma mixing, as might result from the rise of a lower mantle plume through the upper mantle. Incompatible element and Pb isotopic systematics also preclude extensive involvement of depleted (N-type) MORB material or its mantle sources. In our preferred petrogenetic model the Walvis Ridge basalts were derived by partial melting of mantle similar to an enriched (E-type) MORB source which had become heterogeneous on a small scale due to the introduction of small-volume melts and metasomatic fluids.
Resumo:
Cloud computing has seen an impressive growth in recent years, with virtualization technologies being massively adopted to create IaaS (Infrastructure as a Service) public and private solutions. Today, the interest is shifting towards the PaaS (Platform as a Service) model, which allows developers to abstract from the execution platform and focus only on the functionality. There are several public PaaS offerings available, but currently no private PaaS solution is ready for production environments. To fill this gap a new solution must be developed. In this paper we present a key element for enabling this model: a cloud repository based on the OSGi component model. The repository stores, manages, provisions and resolves the dependencies of PaaS software components and services. This repository can federate with other repositories located in the same or different clouds, both private and public. This way, dependencies can be fulfilled collaboratively, and new business models can be implemented.
Resumo:
We present a biomolecular probabilistic model driven by the action of a DNA toolbox made of a set of DNA templates and enzymes that is able to perform Bayesian inference. The model will take single-stranded DNA as input data, representing the presence or absence of a specific molecular signal (the evidence). The program logic uses different DNA templates and their relative concentration ratios to encode the prior probability of a disease and the conditional probability of a signal given the disease. When the input and program molecules interact, an enzyme-driven cascade of reactions (DNA polymerase extension, nicking and degradation) is triggered, producing a different pair of single-stranded DNA species. Once the system reaches equilibrium, the ratio between the output species will represent the application of Bayes? law: the conditional probability of the disease given the signal. In other words, a qualitative diagnosis plus a quantitative degree of belief in that diagno- sis. Thanks to the inherent amplification capability of this DNA toolbox, the resulting system will be able to to scale up (with longer cascades and thus more input signals) a Bayesian biosensor that we designed previously.
Resumo:
Context: This paper addresses one of the major end-user development (EUD) challenges, namely, how to pack today?s EUD support tools with composable elements. This would give end users better access to more components which they can use to build a solution tailored to their own needs. The success of later end-user software engineering (EUSE) activities largely depends on how many components each tool has and how adaptable components are to multiple problem domains. Objective: A system for automatically adapting heterogeneous components to a common development environment would offer a sizeable saving of time and resources within the EUD support tool construction process. This paper presents an automated adaptation system for transforming EUD components to a standard format. Method: This system is based on the use of description logic. Based on a generic UML2 data model, this description logic is able to check whether an end-user component can be transformed to this modeling language through subsumption or as an instance of the UML2 model. Besides it automatically finds a consistent, non-ambiguous and finite set of XSLT mappings to automatically prepare data in order to leverage the component as part of a tool that conforms to the target UML2 component model. Results: The proposed system has been successfully applied to components from four prominent EUD tools. These components were automatically converted to a standard format. In order to validate the proposed system, rich internet applications (RIA) used as an operational support system for operators at a large services company were developed using automatically adapted standard format components. These RIAs would be impossible to develop using each EUD tool separately. Conclusion: The positive results of applying our system for automatically adapting components from current tool catalogues are indicative of the system?s effectiveness. Use of this system could foster the growth of web EUD component catalogues, leveraging a vast ecosystem of user-centred SaaS to further current EUSE trends.
Resumo:
The common cytokine receptor γ chain (γc), a shared component of the receptors for IL-2, IL-4, IL-7, IL-9, and IL-15, is critical for the development and function of lymphocytes. The cytoplasmic domain of γc consists of 85 aa, in which the carboxyl-terminal 48 aa are essential for its interaction with and activation of the Janus kinase, Jak3. Evidence has been provided that Jak3-independent signals might be transmitted via the residual membrane-proximal region; however, its role in vivo remains totally unknown. In the present study, we expressed mutant forms of γc, which lack either most of the cytoplasmic domain or only the membrane-distal Jak3-binding region, on a γc null background. We demonstrate that, unlike γc or Jak3 null mice, expression of the latter, but not the former mutant, restores T lymphopoiesis in vivo, accompanied by strong expression of Bcl-2. On the other hand, the in vitro functions of the restored T cells still remained impaired. These results not only reveal the hitherto unknown role of the γc membrane-proximal region, but also suggest the differential requirement of the cytoplasmic subregions of γc in T cell development and function.