995 resultados para Bajo este sol tremendo
Resumo:
The results of the studies on the effect of rare earth Nd doping on the phase formation behavior and electrical properties of sol-gel derived Pb-1.05(Zr0.53Ti0.47)O-3 (PZT) thin films are presented. The perovskite phase is obtained up to 5 at. % doping and beyond that pyrochlore phase was found to coexist with the perovskite phase in all the films. The transition temperature of undoped lead zirconate titanate (PZT) film was found to be reduced with Nd doping. The Nd doped films also exhibited typical relaxor-type behavior and a diffuse phase transition, similar to that observed in relaxor materials. The introduction of Nd into the PZT lattice probably introduces disorder in the B site of ABO(3) lattice, which causes the observed dielectric relaxation. Efforts were made to isolate the irreversible component contributions in low field dielectric and high field polarization switching behavior. (C) 2001 American Institute of Physics.
Resumo:
Zinc oxide (ZnO) thin films have been prepared on silicon substrates by sol-gel spin coating technique with spinning speed of 3,000 rpm. The films were annealed at different temperatures from 200 to 500 A degrees C and found that ZnO films exhibit different nanostructures at different annealing temperatures. The X-ray diffraction (XRD) results showed that the ZnO films convert from amorphous to polycrystalline phase after annealing at 400 A degrees C. The metal oxide semiconductor (MOS) capacitors were fabricated using ZnO films deposited on pre-cleaned silicon (100) substrates and electrical properties such as current versus voltage (I-V) and capacitance versus voltage (C-V) characteristics were studied. The electrical resistivity decreased with increasing annealing temperature. The oxide capacitance was measured at different annealing temperatures and different signal frequencies. The dielectric constant and the loss factor (tan delta) were increased with increase of annealing temperature.
Resumo:
TiO2 thin films were prepared by sol gel method. The structural investigations performed by means of X- ray diffraction (XRD) technique, Scanning electronic microscopy (SEM) showed the shape structure at T=600°C. The optical constants of the deposited film were obtained from the analysis of the experimental recorded transmittance spectral data over the wavelengths range 200-3000 nm. The values of some important parameters (refractive index n, dielectric constant ε ∞ and thickness d), and the third order optical nonlinear susceptibility χ(3) of TiO2 film are determined from these spectra. It has been found that the dispersion data obey the single oscillator relation of the Wemple-DiDomenico model, from which the dispersion parameters and high – frequency dielectric constant were determined. The estimation of the corresponding band gap Eg , χ (3) and ε ∞ are 2.57 eV, 0.021 × 10-10 esu and 5.20,respectively.
Resumo:
Surfactant-intercalated layered double-hydroxide solid Mg-Al LDH-dodecyl sulfate (DDS) undergoes rapid and facile delamination to its ultimate constituent, single sheets of nanometer thickness and micrometer size, in a nonpolar solvent such as toluene to form stable dispersions. The delaminated nanosheets are electrically neutral because the surfactant chains remain tethered to the inorganic layer even on exfoliation. With increasing volume fraction of the solid, the dispersion transforms from a free-flowing sol to a solidlike gel. Here we have investigated the sol-gel transition in dispersions of the hydrophobically modified Mg-Al LDH-DDS in toluene by rheology, SAXS, and (1)H NMR measurements. The rheo-SAXS measurements show that the sharp rise in the viscosity of the dispersion during gel formation is a consequence of a tactoidal microstructure formed by the stacking of the nanosheets with an intersheet separation of 3.92 nm. The origin and nature of the attractive forces that lead to the formation of the tactoidal structure were obtained from 1D and 2D (1)H NMR measurements that provided direct evidence of the association of the toluene solvent molecules with the terminal methyl of the tethered DDS surfactant chains. Gel formation is a consequence of the attractive dispersive interactions of toluene molecules with the tails of DDS chains anchored to opposing Mg-Al LDH sheets. The toluene solvent molecules function as molecular ``glue'' holding the nanosheets within the tactoidal microstructure together. Our study shows how rheology, SAXS, and NMR measurements complement each other to provide a molecular-level description of the sol-gel transition in dispersions of a hydrophobically modified layered double hydroxide.
Resumo:
Titanium dioxide (TiO(2)) and silicon dioxide (SiO(2)) thin films and their mixed films were synthesized by the sol-gel spin coating method using titanium tetra isopropoxide (TTIP) and tetra ethyl ortho silicate (TEOS) as the precursor materials for TiO(2) and SiO(2) respectively. The pure and composite films of TiO(2) and SiO(2) were deposited on glass and silicon substrates. The optical properties were studied for different compositions of TiO(2) and SiO(2) sols and the refractive index and optical band gap energies were estimated. MOS capacitors were fabricated using TiO(2) films on p-silicon (1 0 0) substrates. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics were studied and the electrical resistivity and dielectric constant were estimated for the films annealed at 200 degrees C for their possible use in optoelectronic applications. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Antiferroelectric lanthanum-modified PbZrO3 thin films with La contents between 0 and 6 at. % have been deposited on Pt(111)/Ti/SiO2/Si substrate by sol-gel route. On the extent of La-modification, maximum polarization (Pmax) and recoverable energy density (W) have been enhanced followed by their subsequent reduction. A maximum Pmax ( ∼ 0.54 C/m2 at ∼ 60 MV/m) as well as a maximum W ( ∼ 14.9 J/cc at ∼ 60 MV/m) have been achieved on 5% La modification. Both Pmax and W have been found to be strongly dependent on La-induced crystallographic orientations.
Resumo:
Highly (110) preferred orientated antiferroelectric PbZrO3 (PZ) and La-modified PZ thin films have been fabricated on Pt/Ti/SiO2/Si substrates using sol-gel process. Dielectric properties, electric field induced ferroelectric polarization, and the temperature dependence of the dielectric response have been explored as a function of composition. The Tc has been observed to decrease by ∼ 17 °C per 1 mol % of La doping. Double hysteresis loops were seen with zero remnant polarization and with coercive fields in between 176 and 193 kV/cm at 80 °C for antiferroelectric to ferroelectric phase transformation. These slim loops have been explained by the high orientation of the films along the polar direction of the antiparallel dipoles of a tetragonal primitive cell and by the strong electrostatic interaction between La ions and oxygen ions in an ABO3 perovskite unit cell. High quality films exhibited very low loss factor less than 0.015 at room temperature and pure PZ; 1 and 2 mol % La doped PZs have shown the room temperature dielectric constant of 135, 219, and 142 at the frequency of 10 kHz. The passive layer effects in these films have been explained by Curie constants and Curie temperatures. The ac conductivity and the corresponding Arrhenius plots have been shown and explained in terms of doping effect and electrode resistance.
Resumo:
Fabrication of 0.65Pb(Mg1/3Nb2./3)O-3-0.35PbTiO(3) (PMN-PT) nanoparticles with an average size of about 40 nm and their phase transformation behavior from pyrochlore to perovskite phase is investigated. A novel sol-gel method was used for the synthesis of air-stable and precipitate-free diol-based sol of PMN-PT which was dried and partially calcined at 450 degrees C for 1 h to decompose organics and bring down the free energy barrier for perovskite crystallization and then finally annealed in the temperature range 600 to 700 degrees C. Annealed at around 700 degrees C for 1 h, PMN-PT gel powder exhibited nanocrystalline morphology with perovskite phase as confirmed by the transmission electron microscopy and X-ray diffraction techniques. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3677974]
Resumo:
We prepared thin films composed of pure TiO2 or TiO2 with an Fe additive (at concentrations of 0.2-0.8 wt%) via a simple and cost effective sol gel process, and tested their antifungal properties (against Candida albicans (MTCC-1637), Candida tropicalis (MTCC-184), Candida parapsilosis (MTCC-2509), and Candida glabrata (MTCC-3019) and antibacterial properties (against Staphylococcus faecalis (NCIM-2604) Staphylococcus epidermidis (NCIM-2493), Staphylococcus aureus (NCIL-2122), and Bacillus subtilis (NCIM-2549)). The films were deposited on glass and Si substrates and subjected to annealing at 400 degrees C for 3 h in ambient air. The film structural and morphological properties were investigated by X-ray photoelectron spectroscopy profilometry and scanning electron microscopy, respectively. Antifungal and antibacterial tests were conducted using the drop test method. Among the species examined, Candida albicans (MTCC-1637), and Staphylococcus aureus (NCIL-2122) showed complete colony formation inhibition after exposure for 4 h for the TiO2 loaded with 0.8 wt% Fe thin films. These results indicate that increasing the Fe concentration increased the antimicrobial activity, with complete inhibition of colony formation after 4 h exposure.
Resumo:
Sol-gel processing followed by H2 reduction is used to produce dispersions of nanosized Pb in amorphous SiO2 and ultrafine γ Al2O3 matrices. A depression of 3–5K in Pb melting point is reported. The size and shape of these metastable particles in molten and solid state are discussed in the light of the experimental observations and expectations from the intersection group theory for equilibrium shape.
Resumo:
ZnO:Al thin films were prepared on glass and silicon substrates by the sol-gel spin coating method. The x-ray diffraction (XRD) results showed that a polycrystalline phase with a hexagonal structure appeared after annealing at 400 degrees C for 1 h. The transmittance increased from 91 to about 93% from pure ZnO films to ZnO film doped with 1 wt% Al and then decreased for 2 wt% Al. The optical band gap energy increased as the doping concentration was increased from 0.5 wt% to 1 wt% Al. The metal oxide semiconductor (MOS) capacitors were fabricated using ZnO films deposited on silicon (100) substrates and electrical properties such as current versus voltage (I-V) and capacitance versus voltage (C-V) characteristics were studied. The electrical resistivity decreased and the leakage current increased with an increase of annealing temperature. The dielectric constant was found to be 3.12 measured at 1 MHz. The dissipation value for the film annealed at 300 degrees C was found to be 3.1 at 5 V. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Tin (Sn) doped zinc oxide (ZnO) thin films were synthesized by sol-gel spin coating method using zinc acetate di-hydrate and tin chloride di-hydrate as the precursor materials. The films were deposited on glass and silicon substrates and annealed at different temperatures in air ambient. The agglomeration of grains was observed by the addition of Sn in ZnO film with an average grain size of 60 nm. The optical properties of the films were studied using UV-VIS-NIR spectrophotometer. The optical band gap energies were estimated at different concentrations of Sn. The MOS capacitors were fabricated using Sn doped ZnO films. The capacitance-voltage (C-V), dissipation vs. voltage (D-V) and current-voltage (I-V) characteristics were studied and the electrical resistivity and dielectric constant were estimated. The porosity and surface area of the films were increased with the doping of Sn which makes these films suitable for opto-electronic applications. (C) 2012 Elsevier B.V. All rights reserved.