902 resultados para Bag-of-visual Words
Resumo:
Objective: To review the clinical characteristics of patients with neuromyelitis optica (NMO) and to compare their visual outcome with those of patients with optic neuritis (ON) and multiple sclerosis (MS). Methods: Thirty-three patients with NMO underwent neuro-ophthalmic evaluation, including automated perimetry along with 30 patients with MS. Visual function in both groups was compared overall and specifically for eyes after a single episode of ON. Results: Visual function and average visual field (VF) mean deviation were significantly worse in eyes of patients with NMO. After a single episode of ON, the VF was normal in only 2 of 36 eyes of patients with NMO compared to 17 of 35 eyes with MS (P < 0.001). The statistical analysis indicated that after a single episode of ON, the odds ratio for having NMO was 6.0 (confidence interval [CI]: 1.6-21.9) when VF mean deviation was worse than -20.0 dB while the odds ratio for having MS was 16.0 (CI: 3.6-68.7) when better than -3.0 dB. Conclusion: Visual outcome was significantly worse in NMO than in MS. After a single episode of ON, suspicion of NMO should be raised in the presence of severe residual VF deficit with automated perimetry and lowered in the case of complete VF recovery.
Resumo:
The effect produced by a warning stimulus(i) (WS) in reaction time (RT) tasks is commonly attributed to a facilitation of sensorimotor mechanisms by alertness. Recently, evidence was presented that this effect is also related to a proactive inhibition of motor control mechanisms. This inhibition would hinder responding to the WS instead of the target stimulus (TS). Some studies have shown that auditory WS produce a stronger facilitatory effect than visual WS. The present study investigated whether the former WS also produces a stronger inhibitory effect than the latter WS. In one session, the RTs to a visual target in two groups of volunteers were evaluated. In a second session, subjects reacted to the visual target both with (50% of the trials) and without (50% of the trials) a WS. During trials, when subjects received a WS, one group received a visual WS and the other group was presented with an auditory WS. In the first session, the mean RTs of the two groups did not differ significantly. In the second session, the mean RT of the two groups in the presence of the WS was shorter than in their absence. The mean RT in the absence of the auditory WS was significantly longer than the mean RT in the absence of the visual WS. Mean RTs did not differ significantly between the present conditions of the visual and auditory WS. The longer RTs of the auditory WS group as opposed to the visual WS group in the WS-absent trials suggest that auditory WS exert a stronger inhibitory influence on responsivity than visual WS.
Resumo:
The ability of integrating into a unified percept sensory inputs deriving from different sensory modalities, but related to the same external event, is called multisensory integration and might represent an efficient mechanism of sensory compensation when a sensory modality is damaged by a cortical lesion. This hypothesis has been discussed in the present dissertation. Experiment 1 explored the role of superior colliculus (SC) in multisensory integration, testing patients with collicular lesions, patients with subcortical lesions not involving the SC and healthy control subjects in a multisensory task. The results revealed that patients with collicular lesions, paralleling the evidence of animal studies, demonstrated a loss of multisensory enhancement, in contrast with control subjects, providing the first lesional evidence in humans of the essential role of SC in mediating audio-visual integration. Experiment 2 investigated the role of cortex in mediating multisensory integrative effects, inducing virtual lesions by inhibitory theta-burst stimulation on temporo-parietal cortex, occipital cortex and posterior parietal cortex, demonstrating that only temporo-parietal cortex was causally involved in modulating the integration of audio-visual stimuli at the same spatial location. Given the involvement of the retino-colliculo-extrastriate pathway in mediating audio-visual integration, the functional sparing of this circuit in hemianopic patients is extremely relevant in the perspective of a multisensory-based approach to the recovery of unisensory defects. Experiment 3 demonstrated the spared functional activity of this circuit in a group of hemianopic patients, revealing the presence of implicit recognition of the fearful content of unseen visual stimuli (i.e. affective blindsight), an ability mediated by the retino-colliculo-extrastriate pathway and its connections with amygdala. Finally, Experiment 4 provided evidence that a systematic audio-visual stimulation is effective in inducing long-lasting clinical improvements in patients with visual field defect and revealed that the activity of the spared retino-colliculo-extrastriate pathway is responsible of the observed clinical amelioration, as suggested by the greater improvement observed in patients with cortical lesions limited to the occipital cortex, compared to patients with lesions extending to other cortical areas, found in tasks high demanding in terms of spatial orienting. Overall, the present results indicated that multisensory integration is mediated by the retino-colliculo-extrastriate pathway and that a systematic audio-visual stimulation, activating this spared neural circuit, is able to affect orientation towards the blind field in hemianopic patients and, therefore, might constitute an effective and innovative approach for the rehabilitation of unisensory visual impairments.
Resumo:
Abstract Originalsprache (englisch) Visual perception relies on a two-dimensional projection of the viewed scene on the retinas of both eyes. Thus, visual depth has to be reconstructed from a number of different cues that are subsequently integrated to obtain robust depth percepts. Existing models of sensory integration are mainly based on the reliabilities of individual cues and disregard potential cue interactions. In the current study, an extended Bayesian model is proposed that takes into account both cue reliability and consistency. Four experiments were carried out to test this model's predictions. Observers had to judge visual displays of hemi-cylinders with an elliptical cross section, which were constructed to allow for an orthogonal variation of several competing depth cues. In Experiment 1 and 2, observers estimated the cylinder's depth as defined by shading, texture, and motion gradients. The degree of consistency among these cues was systematically varied. It turned out that the extended Bayesian model provided a better fit to the empirical data compared to the traditional model which disregards covariations among cues. To circumvent the potentially problematic assessment of single-cue reliabilities, Experiment 3 used a multiple-observation task, which allowed for estimating perceptual weights from multiple-cue stimuli. Using the same multiple-observation task, the integration of stereoscopic disparity, shading, and texture gradients was examined in Experiment 4. It turned out that less reliable cues were downweighted in the combined percept. Moreover, a specific influence of cue consistency was revealed. Shading and disparity seemed to be processed interactively while other cue combinations could be well described by additive integration rules. These results suggest that cue combination in visual depth perception is highly flexible and depends on single-cue properties as well as on interrelations among cues. The extension of the traditional cue combination model is defended in terms of the necessity for robust perception in ecologically valid environments and the current findings are discussed in the light of emerging computational theories and neuroscientific approaches.
Resumo:
Flowers attract honeybees using colour and scent signals. Bimodality (having both scent and colour) in flowers leads to increased visitation rates, but how the signals influence each other in a foraging situation is still quite controversial. We studied four basic questions: When faced with conflicting scent and colour information, will bees choose by scent and ignore the “wrong” colour, or vice versa? To get to the bottom of this question, we trained bees on scent-colour combination AX (rewarded) versus BY (unrewarded) and tested them on AY (previously rewarded colour and unrewarded scent) versus BX (previously rewarded scent and unrewarded colour). It turned out that the result depends on stimulus quality: if the colours are very similar (unsaturated blue and blue-green), bees choose by scent. If they are very different (saturated blue and yellow), bees choose by colour. We used the same scents, lavender and rosemary, in both cases. Our second question was: Are individual bees hardwired to use colour and ignore scent (or vice versa), or can this behaviour be modified, depending on which cue is more readily available in the current foraging context? To study this question, we picked colour-preferring bees and gave them extra training on scent-only stimuli. Afterwards, we tested if their preference had changed, and if they still remembered the scent stimulus they had originally used as their main cue. We came to the conclusion that a colour preference can be reversed through scent-only training. We also gave scent-preferring bees extra training on colour-only stimuli, and tested for a change in their preference. The number of animals tested was too small for statistical tests (n = 4), but a common tendency suggested that colour-only training leads to a preference for colour. A preference to forage by a certain sensory modality therefore appears to be not fixed but flexible, and adapted to the bee’s surroundings. Our third question was: Do bees learn bimodal stimuli as the sum of their parts (elemental learning), or as a new stimulus which is different from the sum of the components’ parts (configural learning)? We trained bees on bimodal stimuli, then tested them on the colour components only, and the scent components only. We performed this experiment with a similar colour set (unsaturated blue and blue-green, as above), and a very different colour set (saturated blue and yellow), but used lavender and rosemary for scent stimuli in both cases. Our experiment yielded unexpected results: with the different colours, the results were best explained by elemental learning, but with the similar colour set, bees exhibited configural learning. Still, their memory of the bimodal compound was excellent. Finally, we looked at reverse-learning. We reverse-trained bees with bimodal stimuli to find out whether bimodality leads to better reverse-learning compared to monomodal stimuli. We trained bees on AX (rewarded) versus BY (unrewarded), then on AX (unrewarded) versus BY (rewarded), and finally on AX (rewarded) and BY (unrewarded) again. We performed this experiment with both colour sets, always using the same two scents (lavender and rosemary). It turned out that bimodality does not help bees “see the pattern” and anticipate the switch. Generally, bees trained on the different colour set performed better than bees trained on the similar colour set, indicating that stimulus salience influences reverse-learning.
Resumo:
Patients with homonymous hemianopia have altered visual search patterns, but it is unclear how rapidly this develops and whether it reflects a strategic adaptation to altered perception or plastic changes to tissue damage. To study the temporal dynamics of adaptation alone, we used a gaze-contingent display to simulate left or right hemianopia in 10 healthy individuals as they performed 25 visual search trials. Visual search was slower and less accurate in hemianopic than in full-field viewing. With full-field viewing, there were improvements in search speed, fixation density, and number of fixations over the first 9 trials, then stable performance. With hemianopic viewing, there was a rapid shift of fixation into the blind field over the first 5-7 trials, followed by continuing gradual improvements in completion time, number of fixations, and fixation density over all 25 trials. We conclude that in the first minutes after onset of hemianopia, there is a biphasic pattern of adaptation to altered perception: an early rapid qualitative change that shifts visual search into the blind side, followed by more gradual gains in the efficiency of using this new strategy, a pattern that has parallels in other studies of motor learning.
Resumo:
PURPOSE To evaluate 3-year follow-up treatment outcomes with ranibizumab (Lucentis(®)) 0.5 mg administered either monthly or quarterly on a pro re nata (PRN) basis according to a disease activity-guided monitoring and treatment algorithm. METHODS A total of 316 treatment-naive eyes of 316 patients with exudative age-related macular degeneration met the criteria for inclusion in this retrospective, interventional case series. Patients were treated with ranibizumab 0.5 mg according to a disease activity-guided algorithm with monthly monitoring. Optical coherence tomography and fluorescein angiography were routinely used to assess disease activity: active lesions were treated with a series of three monthly injections, whereas inactive lesions were treated with quarterly injections. RESULTS Mean Early Treatment Diabetic Retinopathy Study best-corrected visual acuity improved from 52 letters at baseline to 59 letters at 12 months, achieved with a mean of 7.1 injections, 61 letters at 24 months with a mean of 5.0 injections administered in the second year and 60 letters at 36 months with a mean number of 5.2 injections. CONCLUSIONS Monthly visits and a morphology-driven PRN regimen with 3 injections in case of recurrence plus quarterly injections in case of inactive CNV resulted in an average VA gain of 7-9 letters that could be maintained over 3 years.
Resumo:
Conservation strategies for long-lived vertebrates require accurate estimates of parameters relative to the populations' size, numbers of non-breeding individuals (the “cryptic” fraction of the population) and the age structure. Frequently, visual survey techniques are used to make these estimates but the accuracy of these approaches is questionable, mainly because of the existence of numerous potential biases. Here we compare data on population trends and age structure in a bearded vulture (Gypaetus barbatus) population from visual surveys performed at supplementary feeding stations with data derived from population matrix-modelling approximations. Our results suggest that visual surveys overestimate the number of immature (<2 years old) birds, whereas subadults (3–5 y.o.) and adults (>6 y.o.) were underestimated in comparison with the predictions of a population model using a stable-age distribution. In addition, we found that visual surveys did not provide conclusive information on true variations in the size of the focal population. Our results suggest that although long-term studies (i.e. population matrix modelling based on capture-recapture procedures) are a more time-consuming method, they provide more reliable and robust estimates of population parameters needed in designing and applying conservation strategies. The findings shown here are likely transferable to the management and conservation of other long-lived vertebrate populations that share similar life-history traits and ecological requirements.
Resumo:
Visuo-perceptual abnormalities are a prominent feature in dementia with Lewy bodies (DLB) and also occur in Alzheimer's disease (AD) to a lesser extent. We studied the progression of visuo-perceptual abnormalities over a 12-month period in DLB and AD by using a novel computerised test battery.
Resumo:
We present the case of a 60 year old male patient with incidentally detected visual abnormalities. Detailed personal history revealed a hypogonadism that had been present for several years. Further investigations established the diagnosis of an infiltrative macroadenoma. Medical treatment with cabergoline led to a rapid regression of ophthalmologic symptoms and, subsequently, of tumor size. In male subjects symptoms of hypogonadism are often reported only late in the course of the disease, thereby leading to a generally larger tumor size at the point of diagnosis. In contrast to other pituitary tumors that are mainly treated by surgery, medical treatment with dopamine agonists is the principal therapeutic option in prolactinomas.
Resumo:
OBJECTIVE: To investigate whether autistic subjects show a different pattern of neural activity than healthy individuals during processing of faces and complex patterns. METHODS: Blood oxygen level-dependent (BOLD) signal changes accompanying visual processing of faces and complex patterns were analyzed in an autistic group (n = 7; 25.3 [6.9] years) and a control group (n = 7; 27.7 [7.8] years). RESULTS: Compared with unaffected subjects, autistic subjects demonstrated lower BOLD signals in the fusiform gyrus, most prominently during face processing, and higher signals in the more object-related medial occipital gyrus. Further signal increases in autistic subjects vs controls were found in regions highly important for visual search: the superior parietal lobule and the medial frontal gyrus, where the frontal eye fields are located. CONCLUSIONS: The cortical activation pattern during face processing indicates deficits in the face-specific regions, with higher activations in regions involved in visual search. These findings reflect different strategies for visual processing, supporting models that propose a predisposition to local rather than global modes of information processing in autism.