887 resultados para Bad smells
Resumo:
Hypoxic-ischaemic encephalopathy (HIE) is of major importance in neonatal and paediatric intensive care with regard to mortality and long-term morbidity. Our aim was to analyse our data in full-term neonates and children with special regard to withdrawal of life support and bad outcome. PATIENTS: All patients with HIE admitted to our unit from 1992-96 were analysed. Criteria for HIE were presence of a hypoxic insult followed by coma or altered consciousness with or without convulsions. Severity of HIE was assessed in neonates using Sarnat stages, and in children the duration of coma. In the majority of cases staging was completed with electrophysiological studies. Outcome was described using the Glasgow Outcome Scale. Bad outcome was defined as death, permanent vegetative state or severe disability, good outcome as moderate disability or good recovery. RESULTS: In the neonatal group (n = 38) outcome was significantly associated with Sarnat stages, presence of convulsions, severely abnormal EEG, cardiovascular failure, and multiple organ dysfunction (MOD). A bad outcome was observed in 27 cases with 14 deaths and 13 survivors. Supportive treatment was withdrawn in 14 cases with 9 subsequent deaths. In the older age group (n = 45) outcome was related to persistent coma of 24-48 h, severely abnormal EEG, cardiovascular failure, liver dysfunction and MOD. A bad outcome was found in 36 cases with 33 deaths and 3 survivors. Supportive treatment was withdrawn in 15 instances, all followed by death. CONCLUSIONS: Overall, neonates and older patients did not differ with regard to good or bad outcome. However, in the neonatal group there were significantly more survivors with bad outcome, either overall or after withdrawal of support. Possible explanations for this difference include variability of hypoxic insult, maturational and metabolic differences, and the more compliant neonatal skull, which prevents brainstem herniation.
Resumo:
Notch signaling is an evolutionarily conserved pathway, which is fundamental for neuronal development and specification. In the last decade, increasing evidence has pointed out an important role of this pathway beyond embryonic development, indicating that Notch also displays a critical function in the mature brain of vertebrates and invertebrates. This pathway appears to be involved in neural progenitor regulation, neuronal connectivity, synaptic plasticity and learning/memory. In addition, Notch appears to be aberrantly regulated in neurodegenerative diseases, including Alzheimer's disease and ischemic injury. The molecular mechanisms by which Notch displays these functions in the mature brain are not fully understood, but are currently the subject of intense research. In this review, we will discuss old and novel Notch targets and molecular mediators that contribute to Notch function in the mature brain and will summarize recent findings that explore the two facets of Notch signaling in brain physiology and pathology.
Resumo:
verf. von [Nathan] Epstein
Resumo:
von Moritz Steckelmacher
Resumo:
Text dt., engl. u. frz