990 resultados para BONE GRAFT


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: To evaluate the influence of sex, implant characteristics, and bone grafting on the survival rate of dual acid-etched (DAE) implants. Materials and Methods: Patients treated with internal-hex DAE implants for single-tooth replacement in a military dental clinic between January 2005 and December 2010 were included in this study. Clinical data related to implant characteristics, implant location, presence of grafted bone, and implant failures were collected. The primary outcome was implant loss. The survival rate was analyzed using the Kaplan-Meier method. Cox regression modeling was used to determine which factors would predict implant failure. Results: DAE implants were evaluated in a total of 988 patients (80.3% men). Twenty-four (2.4%) implants failed, most were cylindric (54.2%) with regular platforms (70.8%) and were 10 mm long (58.3%). The failure rate was 2.4% for the anterior maxilla, 3.3% for the posterior maxilla, 1.6% for the anterior mandible, and 2.0% for posterior mandible. The cumulative survival rate was 97.6%. The failure rate was 8.8% in implants placed after sinus augmentation, 7.3% in bone block-grafted areas, and 1.6% in native bone. Based on multivariable analysis (Cox regression), sinus augmentation and bone block grafting had a statistically significant effect on implant failure; the hazard ratios were 5.5 and 4.6, respectively. Conclusion: The results revealed that DAE implants had high survival rates, and no influence of sex, location, shape, diameter, or length on failure rates could be observed. However, a significant association was observed between failure and presence of bone graft in the implant area. Int J Oral Maxillofac Implants 2012;27:1243-1248

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present article discusses an atrophic maxilla reconstruction with iliac crest bone block and particulate grafts and dental implants. Onlay block grafts were used to restore bone volume of the anterior maxilla, whereas bilateral sinus floor augmentation was performed using a particulate graft. Ten months after the grafting surgery, 9 dental implants were placed to rehabilitate the case. Results of a 7-year follow-up were obtained clinically and by cone beam computed tomographic images.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objectives: To verify the thickness and level of alveolar bone around the teeth adjacent to the cleft by means of cone beam computed tomography (CBCT) in patients with complete bilateral cleft lip and palate prior to bone graft surgery and orthodontic intervention. Method: The sample comprised 10 patients with complete bilateral cleft lip and palate (five boys and five girls) in the mixed dentition. The mean age was 9.5 years, and all subjects showed a G3 interarch relationship according to the Bauru index. The thickness of alveolar bone surrounding the maxillary incisors and the maxillary canines was measured in CBCT axial section using the software iCAT Xoran System. The distance between the alveolar bone crest and the cement-enamel junction (CEJ) was measured in cross sections. Results: The tomography images showed a thin alveolar bone plate around teeth adjacent to clefts. No bone dehiscence was observed in teeth adjacent to clefts during the mixed dentition. A slight increase in the distance between the alveolar bone crest and the CEJ was observed in the mesial and lingual aspects of canines adjacent to cleft. Conclusion: In patients with BCLP in the mixed dentition, teeth adjacent to the alveolar cleft are covered by a thin alveolar bone plate. However, the level of alveolar bone crest around these teeth seems to be normal, and no bone dehiscence was identified at this age.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: In sites with diminished bone volume, the osseointegration of dental implants can be compromised. Innovative biomaterials have been developed to aid successful osseointegration outcomes. Purpose: The aim of this study was to evaluate the osteogenic potential of angiogenic latex proteins for improved bone formation and osseointegration of dental implants. Materials and Methods: Ten dogs were submitted to bilateral circumferential defects (5.0 x 6.3 mm) in the mandible. Dental implant (3.3 x 10.0 mm, TiUnite MK3 (TM), Nobel Biocare AB, Goteborg, Sweden) was installed in the center of the defects. The gap was filled either with coagulum (Cg), autogenous bone graft (BG), or latex angiogenic proteins pool (LPP). Five animals were sacrificed after 4 weeks and 12 weeks, respectively. Implant stability was evaluated using resonance frequency analysis (Osstell Mentor T, Osstell AB, Goteborg, Sweden), and bone formation was analyzed by histological and histometric analysis. Results: LPP showed bone regeneration similar to BG and Cg at 4 weeks and 12 weeks, respectively (p >= 3.05). Bone formation, osseointegration, and implant stability improved significantly from 4 to 12 weeks (p <= 2.05). Conclusion: Based on methodological limitations of this study, Cg alone delivers higher bone formation in the defect as compared with BG at 12 weeks; compared with Cg and BG, the treatment with LPP exhibits no advantage in terms of osteogenic potential in this experimental model, although overall osseointegration was not affected by the treatments employed in this study.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: The bone tissue responses to Cyanoacrylate have been described in the literature, but none used N-butyl-2-cyanoacrilate (NB-Cn) for bone graft fixation. Purpose: The aims of the study were: (a) to analyze the bone grafts volume maintenance fixed either with NB-Cn or titanium screw; (b) to assess the incorporation of onlay grafts on perforated recipient bed; and (c) the differences of expression level of tartrate-resistant acid phosphatase (TRAP) protein involved in bone resorption. Materials and Methods: Eighteen New Zealand White rabbits were submitted to calvaria onlay grafting on both sides of the mandible. On one side, the graft was fixed with NB-Cn, while on the other hand the bone graft was secured with an osteosynthesis screw. The computed tomography (CT) was performed just after surgery and at animals sacrifice, after 1 (n = 9) and 6 weeks (n = 9), in order to estimate the bone grafts volume along the experiments. Histological sections of the grafted areas were prepared to evaluate the healing of bone grafts and to assess the expression of TRAP protein. Results: The CT scan showed better volume maintenance of bone grafts fixed with NB-Cn (p = 0.05) compared with those fixed with screws, in both experimental times (analysis of variance). The immunohistochemical evaluation showed that the TRAP expression in a 6-week period was significantly higher compared with the 1-week period, without showing significant difference between the groups (Wilcoxon and MannWhitney). Histological analysis revealed that the NB-Cn caused periosteum damage, but provided bone graft stabilization and incorporation similar to the control group. Conclusion: The perforation provided by screw insertion into the graft during fixation may have triggered early revascularization and remodeling to render increased volume loss compared with the experimental group. These results indicate that the NB-Cn possesses equivalent properties to titanium screw to be used as bone fixation material in osteosynthesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A 6mm segmental defect was performed on the metaphyseal region of the tibia of 12 rabbits and the autoclaved fragmented heterolog cortical bone conserved in glycerin (98%) and methylmethacrylate was used as a bone graft for the reconstruction. The graft was placed in the receptor bed and its integration was evaluated by computed tomography after 30, 60 and 90 days. There was gradual bone graft incorporation in the receptor bed during the time in 100% of the cases. Fragmented cortical bone heterograft and methylmethacrylate was biologically compatible and promotes bone defect reparation without signs of infection, migration and or rejection, featuring a new option of osseous substitute to fill in bone defects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Patienten, die an Osteosarkom leiden werden derzeit mit intravenös applizierten krebstherapeutischen Mitteln nach Tumorresektion behandelt, was oftmals mit schweren Nebenwirkungen und einem verzögerten Knochenheilungsprozess einhergeht. Darüber hinaus treten vermehrt Rezidive aufgrund von verbleibenden neoplastischen Zellen an der Tumorresektionsstelle auf. Erfolgreiche Knochenregeneration und die Kontrolle von den im Gewebe verbleibenden Krebszellen stellt eine Herausforderung für das Tissue Engineering nach Knochenverlust durch Tumorentfernung dar. In dieser Hinsicht scheint der Einsatz von Hydroxyapatit als Knochenersatzmaterial in Kombination mit Cyclodextrin als Medikamententräger, vielversprechend. Chemotherapeutika können an Biomaterial gebunden und direkt am Tumorbett über einen längeren Zeitraum freigesetzt werden, um verbliebene neoplastische Zellen zu eliminieren. Lokal applizierte Chemotherapie hat diverse Vorteile, einschließlich der direkten zytotoxischen Auswirkung auf lokale Zellen, sowie die Reduzierung schwerer Nebenwirkungen. Diese Studie wurde durchgeführt, um die Funktionsfähigkeit eines solchen Arzneimittelabgabesystems zu bewerten und um Strategien im Bereich des Tissue Engineerings zu entwickeln, die den Knochenheilungsprozess und im speziellen die Vaskularisierung fördern sollen. Die Ergebnisse zeigen, dass nicht nur Krebszellen von der chemotherapeutischen Behandlung betroffen sind. Primäre Endothelzellen wie zum Beispiel HUVEC zeigten eine hohe Sensibilität Cisplatin und Doxorubicin gegenüber. Beide Medikamente lösten in HUVEC ein tumor-unterdrückendes Signal durch die Hochregulation von p53 und p21 aus. Zudem scheint Hypoxie einen krebstherapeutischen Einfluss zu haben, da die Behandlung sensitiver HUVEC mit Hypoxie die Zellen vor Zytotoxizität schützte. Der chemo-protektive Effekt schien deutlich weniger auf Krebszelllinien zu wirken. Diese Resultate könnten eine mögliche chemotherapeutische Strategie darstellen, um den Effekt eines zielgerichteten Medikamenteneinsatzes auf Krebszellen zu verbessern unter gleichzeitiger Schonung gesunder Zellen. Eine erfolgreiche Integration eines Systems, das Arzneimittel abgibt, kombiniert mit einem Biomaterial zur Stabilisierung und Regeneration, könnte gesunden Endothelzellen die Möglichkeit bieten zu proliferieren und Blutgefäße zu bilden, während verbleibende Krebszellen eliminiert werden. Da der Prozess der Knochengeweberemodellierung mit einer starken Beeinträchtigung der Lebensqualität des Patienten einhergeht, ist die Beschleunigung des postoperativen Heilungsprozesses eines der Ziele des Tissue Engineerings. Die Bildung von Blutgefäßen ist unabdingbar für eine erfolgreiche Integration eines Knochentransplantats in das Gewebe. Daher ist ein umfangreich ausgebildetes Blutgefäßsystem für einen verbesserten Heilungsprozess während der klinischen Anwendung wünschenswert. Frühere Experimente zeigen, dass sich die Anwendung von Ko-Kulturen aus humanen primären Osteoblasten (pOB) und humanen outgrowth endothelial cells (OEC) im Hinblick auf die Bildung stabiler gefäßähnlicher Strukturen in vitro, die auch effizient in das mikrovaskuläre System in vivo integriert werden konnten, als erfolgreich erweisen. Dieser Ansatz könnte genutzt werden, um prä-vaskularisierte Konstrukte herzustellen, die den Knochenheilungsprozess nach der Implantation fördern. Zusätzlich repräsentiert das Ko-Kultursystem ein exzellentes in vitro Model, um Faktoren, welche stark in den Prozess der Knochenheilung und Angiogenese eingebunden sind, zu identifizieren und zu analysieren. Es ist bekannt, dass Makrophagen eine maßgebliche Rolle in der inflammatorisch-induzierten Angiogenese spielen. In diesem Zusammenhang hebt diese Studie den positiven Einfluss THP-1 abgeleiteter Makrophagen in Ko-Kultur mit pOB und OEC hervor. Die Ergebnisse zeigten, dass die Anwendung von Makrophagen als inflammatorischer Stimulus im bereits etablierten Ko-Kultursystem zu einer pro-angiogenen Aktivierung der OEC führte, was in einer signifikant erhöhten Bildung blutgefäßähnlicher Strukturen in vitro resultierte. Außerdem zeigte die Analyse von Faktoren, die in der durch Entzündung hervorgerufenen Angiogenese eine wichtige Rolle spielen, eine deutliche Hochregulation von VEGF, inflammatorischer Zytokine und Adhäsionsmoleküle, die letztlich zu einer verstärkten Vaskularisierung beitragen. Diese Resultate werden dem Einfluss von Makrophagen zugeschrieben und könnten zukünftig im Tissue Engineering eingesetzt werden, um den Heilungsprozess zu beschleunigen und damit die klinische Situation von Patienten zu verbessern. Darüber hinaus könnte die Kombination der auf Ko-Kulturen basierenden Ansätze für das Knochen Tissue Engineering mit einem biomaterial-basierenden Arzneimittelabgabesystem zum klinischen Einsatz kommen, der die Eliminierung verbliebener Krebszellen mit der Förderung der Knochenregeneration verbindet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To evaluate a new surgical method, using calvarial bone graft combined with a wedge of irradiated homologous costal cartilage, for the revision repair of posttraumatic enophthalmos.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The osteogenic potential of autogenous bone grafts is superior to that of allografts and xenografts because of their ability to release osteoinductive growth factors and provide a natural osteoconductive surface for cell attachment and growth. In this in vitro study, autogenous bone particles were harvested by four commonly used techniques and compared for their ability to promote an osteogenic response. Primary osteoblasts were isolated and seeded on autogenous bone grafts prepared from the mandibles of miniature pigs with a bone mill, piezo-surgery, bone scraper, and bone drill (bone slurry). The osteoblast cultures were compared for their ability to promote cell attachment, proliferation, and differentiation. After 4 and 8 hrs, significantly higher cell numbers were associated with bone mill and bone scraper samples compared with those acquired by bone slurry and piezo-surgery. Similar patterns were consistently observed up to 5 days. Furthermore, osteoblasts seeded on bone mill and scraper samples expressed significantly elevated mRNA levels of collagen, osteocalcin, and osterix at 3 and 14 days and produced more mineralized tissue as assessed by alizarin red staining. These results suggest that the larger bone graft particles produced by bone mill and bone scraper techniques have a higher osteogenic potential than bone slurry and piezo-surgery.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Limitations in the use of autologous bone graft, which is the gold standard therapy in bone defect healing, drive the search for alternative treatments. In this study the influence of rhTGFbeta-3 on mechanical and radiological parameters of a healing bone defect in the sheep tibia was assessed. In the sheep, an 18-mm long osteoperiosteal defect in the tibia was treated by rhTGFbeta-3 seeded on a poly(L/DL-lactide) carrier (n = 4). In a second group (n = 4), the defect was treated by the carrier only, in a third group (n = 4) by autologous cancellous bone graft, and in a fourth group (n = 2) the defect remained blank. The healing process of the defect was assessed by weekly in vivo stiffness measurements and radiology as well as by quantitative computed tomographic assessment of bone mineral density (BMD) every 4 weeks. The duration of the experiment was 12 weeks under loading conditions. In the bone graft group, a marginally significant higher increase in stiffness was observed than in the PLA/rhTGFbeta-3 group (p = 0.06) and a significantly higher increase than in the PLA-only group (p = 0.03). The radiographic as well as the computed tomographic evaluation yielded significant differences between the groups (p = 0.03), indicating the bone graft treatment (bone/per area, 83%; BMD, 0.57 g/cm(3)) performing better than the PLA/rhTGFbeta-3 (38%; 0.23 g/cm(3)) and the PLA-only treatment (2.5%; 0.09 g/cm(3)), respectively. Regarding the mechanical and radiological parameters assessed in this study, we conclude that rhTGFbeta-3 has a promoting effect on bone regeneration. However, under the conditions of this study, this effect does not reach the potential of autologous cancellous bone graft transplantation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tissue grafts are implanted in orthopedic surgery every day. In order to minimize infection risk, bone allografts are often delipidated with supercritical CO2 and sterilized prior to implantation. This treatment may, however, impair the mechanical behavior of the bone graft tissue. The goal of this study was to determine clinically relevant mechanical properties of treated/sterilized human trabecular bone grafts, e.g. the apparent modulus, strength, and the ability to absorb energy during compaction. They were compared with results of identical experiments performed previously on untreated/fresh frozen human trabecular bone from the same anatomical site (Charlebois, 2008). We tested the hypothesis that the morphology–mechanical property relationships of treated cancellous allografts are similar to those of fresh untreated bone. The morphology of the allografts was determined by μCT. Subsequently, cylindrical samples were tested in unconfined and confined compression. To account for various morphologies, the experimental data was fitted to phenomenological mechanical models for elasticity, strength, and dissipated energy density based on bone volume fraction (BV/TV) and the fabric tensor determined by MIL. The treatment/sterilization process does not appear to influence bone graft stiffness. However, strength and energy dissipation of the bone grafts were found to be significantly reduced by 36% to 47% and 66% to 81%, respectively, for a broad range of volume fraction (0.14 < BV/TV < 0.39) and degree of anisotropy (1.24 < DA < 2.18). Since the latter properties are strongly dominated by BV/TV, the clinical consequences of this reduction can be compensated by using grafts with lower porosity. The data of this study suggests that an increase of 5–10% in BV/TV is sufficient to compensate for the reduced post-yield mechanical properties of treated/sterilized bone in monotonic compression. In applications where graft stiffness needs to be matched and strength is not a concern, treated allograft with the same BV/TV as an appropriate fresh bone graft may be used.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVES Previously, the use of enamel matrix derivative (EMD) in combination with a natural bone mineral (NBM) was able to stimulate periodontal ligament cell and osteoblast proliferation and differentiation. Despite widespread use of EMD for periodontal applications, the effects of EMD on bone regeneration are not well understood. The aim of the present study was to test the ability of EMD on bone regeneration in a rat femur defect model in combination with NBM. MATERIALS AND METHODS Twenty-seven rats were treated with either NBM or NBM + EMD and assigned to histological analysis at 2, 4, and 8 weeks. Defect morphology and mineralized bone were assessed by μCT. For descriptive histology, hematoxylin and eosin staining and Safranin O staining were performed. RESULTS Significantly more newly formed trabecular bone was observed at 4 weeks around the NBM particles precoated with EMD when compared with NBM particles alone. The drilled control group, in contrast, achieved minimal bone regeneration at all three time points (P < 0.05). CONCLUSIONS The present results may suggest that EMD has the ability to enhance the speed of new bone formation when combined with NBM particles in rat osseous defects. CLINICAL RELEVANCE These findings may provide additional clinical support for the combination of EMD with bone graft for the repair of osseous and periodontal intrabony defects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE Over 15 years have passed since an enamel matrix derivative (EMD) was introduced as a biologic agent capable of periodontal regeneration. Histologic and controlled clinical studies have provided evidence for periodontal regeneration and substantial clinical improvements following its use. The purpose of this review article was to perform a systematic review comparing the eff ect of EMD when used alone or in combination with various types of bone grafting material. DATA SOURCES A literature search was conducted on several medical databases including Medline, EMBASE, LILACS, and CENTRAL. For study inclusion, all studies that used EMD in combination with a bone graft were included. In the initial search, a total of 820 articles were found, 71 of which were selected for this review article. Studies were divided into in vitro, in vivo, and clinical studies. The clinical studies were subdivided into four subgroups to determine the eff ect of EMD in combination with autogenous bone, allografts, xenografts, and alloplasts. RESULTS The analysis from the present study demonstrates that while EMD in combination with certain bone grafts is able to improve the regeneration of periodontal intrabony and furcation defects, direct evidence supporting the combination approach is still missing. CONCLUSION Further controlled clinical trials are required to explain the large variability that exists amongst the conducted studies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE The aim of the present systematic review and meta-analysis was to assess the clinical efficacy of regenerative periodontal surgery of intrabony defects using a combination of enamel matrix derivative (EMD) and bone graft compared with that of EMD alone. MATERIALS AND METHODS The Cochrane Oral Health Group specialist trials, MEDLINE, and EMBASE databases were searched for entries up to February 2014. The primary outcome was gain of clinical attachment (CAL). Weighted means and forest plots were calculated for CAL gain, probing depth (PD), and gingival recession (REC). RESULTS Twelve studies reporting on 434 patients and 548 intrabony defects were selected for the analysis. Mean CAL gain amounted to 3.76 ± 1.07 mm (median 3.63 95 % CI 3.51-3.75) following treatment with a combination of EMD and bone graft and to 3.32 ± 1.04 mm (median 3.40; 95 % CI 3.28-3.52) following treatment with EMD alone. Mean PD reduction measured 4.22 ± 1.20 mm (median 4.10; 95 % CI 3.96-4.24) at sites treated with EMD and bone graft and yielded 4.12 ± 1.07 mm (median 4.00; 95 % CI 3.88-4.12) at sites treated with EMD alone. Mean REC increase amounted to 0.76 ± 0.42 mm (median 0.63; 95 % CI 0.58-0.68) at sites treated with EMD and bone graft and to 0.91 ± 0.26 mm (median 0.90; 95 % CI 0.87-0.93) at sites treated with EMD alone. CONCLUSIONS Within their limits, the present results indicate that the combination of EMD and bone grafts may result in additional clinical improvements in terms of CAL gain and PD reduction compared with those obtained with EMD alone. The potential influence of the chosen graft material or of the surgical procedure (i.e., flap design) on the clinical outcomes is unclear. CLINICAL RELEVANCE The present findings support the use of EMD and bone grafts for the treatment of intrabony periodontal defects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bone is the second most widely transplanted tissue after blood. Synthetic alternatives are needed that can reduce the need for transplants and regenerate bone by acting as active temporary templates for bone growth. Bioactive glasses are one of the most promising bone replacement/regeneration materials because they bond to existing bone, are degradable and stimulate new bone growth by the action of their dissolution products on cells. Sol-gel-derived bioactive glasses can be foamed to produce interconnected macropores suitable for tissue ingrowth, particularly cell migration and vascularization and cell penetration. The scaffolds fulfil many of the criteria of an ideal synthetic bone graft, but are not suitable for all bone defect sites because they are brittle. One strategy for improving toughness of the scaffolds without losing their other beneficial properties is to synthesize inorganic/organic hybrids. These hybrids have polymers introduced into the sol-gel process so that the organic and inorganic components interact at the molecular level, providing control over mechanical properties and degradation rates. However, a full understanding of how each feature or property of the glass and hybrid scaffolds affects cellular response is needed to optimize the materials and ensure long-term success and clinical products. This review focuses on the techniques that have been developed for characterizing the hierarchical structures of sol-gel glasses and hybrids, from atomicscale amorphous networks, through the covalent bonding between components in hybrids and nanoporosity, to quantifying open macroporous networks of the scaffolds. Methods for non-destructive in situ monitoring of degradation and bioactivity mechanisms of the materials are also included. © 2012 The Royal Society.