972 resultados para BIOLOGICAL NETWORKS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biodiversity is organised into complex ecological networks of interacting species in local ecosystems, but our knowledge about the effects of habitat fragmentation on such systems remains limited. We consider the effects of this key driver of both local and global change on both mutualistic and antagonistic systems at different levels of biological organisation and spatiotemporal scales.There is a complex interplay of patterns and processes related to the variation and influence of spatial, temporal and biotic drivers in ecological networks. Species traits (e.g. body size, dispersal ability) play an important role in determining how networks respond to fragment size and isolation, edge shape and permeability, and the quality of the surrounding landscape matrix. Furthermore, the perception of spatial scale (e.g. environmental grain) and temporal effects (time lags, extinction debts) can differ markedly among species, network modules and trophic levels, highlighting the need to develop a more integrated perspective that considers not just nodes, but the structural role and strength of species interactions (e.g. as hubs, spatial couplers and determinants of connectance, nestedness and modularity) in response to habitat fragmentation.Many challenges remain for improving our understanding: the likely importance of specialisation, functional redundancy and trait matching has been largely overlooked. The potentially critical effects of apex consumers, abundant species and supergeneralists on network changes and evolutionary dynamics also need to be addressed in future research. Ultimately, spatial and ecological networks need to be combined to explore the effects of dispersal, colonisation, extinction and habitat fragmentation on network structure and coevolutionary dynamics. Finally, we need to embed network approaches more explicitly within applied ecology in general, because they offer great potential for improving on the current species-based or habitat-centric approaches to our management and conservation of biodiversity in the face of environmental change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The capacitor placement problem for radial distribution networks aims to determine capacitor types, sizes, locations and control scheme. This is a combinatorial problem that can be formulated as a mixed integer nonlinear program. The paper presents an algorithm inspired in artificial immune systems and developed for this specific problem. A good performance was obtained through experimental tests applied to known systems. © 2006 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays there is great interest in damage identification using non destructive tests. Predictive maintenance is one of the most important techniques that are based on analysis of vibrations and it consists basically of monitoring the condition of structures or machines. A complete procedure should be able to detect the damage, to foresee the probable time of occurrence and to diagnosis the type of fault in order to plan the maintenance operation in a convenient form and occasion. In practical problems, it is frequent the necessity of getting the solution of non linear equations. These processes have been studied for a long time due to its great utility. Among the methods, there are different approaches, as for instance numerical methods (classic), intelligent methods (artificial neural networks), evolutions methods (genetic algorithms), and others. The characterization of damages, for better agreement, can be classified by levels. A new one uses seven levels of classification: detect the existence of the damage; detect and locate the damage; detect, locate and quantify the damages; predict the equipment's working life; auto-diagnoses; control for auto structural repair; and system of simultaneous control and monitoring. The neural networks are computational models or systems for information processing that, in a general way, can be thought as a device black box that accepts an input and produces an output. Artificial neural nets (ANN) are based on the biological neural nets and possess habilities for identification of functions and classification of standards. In this paper a methodology for structural damages location is presented. This procedure can be divided on two phases. The first one uses norms of systems to localize the damage positions. The second one uses ANN to quantify the severity of the damage. The paper concludes with a numerical application in a beam like structure with five cases of structural damages with different levels of severities. The results show the applicability of the presented methodology. A great advantage is the possibility of to apply this approach for identification of simultaneous damages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Genética) - IBB

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our understanding of how anthropogenic habitat change shapes species interactions is in its infancy. This is in large part because analytical approaches such as network theory have only recently been applied to characterize complex community dynamics. Network models are a powerful tool for quantifying how ecological interactions are affected by habitat modification because they provide metrics that quantify community structure and function. Here, we examine how large-scale habitat alteration has affected ecological interactions among mixed-species flocking birds in Amazonian rainforest. These flocks provide a model system for investigating how habitat heterogeneity influences non-trophic interactions and the subsequent social structure of forest-dependent mixed-species bird flocks. We analyse 21 flock interaction networks throughout a mosaic of primary forest, fragments of varying sizes and secondary forest (SF) at the Biological Dynamics of Forest Fragments Project in central Amazonian Brazil. Habitat type had a strong effect on network structure at the levels of both species and flock. Frequency of associations among species, as summarized by weighted degree, declined with increasing levels of forest fragmentation and SF. At the flock level, clustering coefficients and overall attendance positively correlated with mean vegetation height, indicating a strong effect of habitat structure on flock cohesion and stability. Prior research has shown that trophic interactions are often resilient to large-scale changes in habitat structure because species are ecologically redundant. By contrast, our results suggest that behavioural interactions and the structure of non-trophic networks are highly sensitive to environmental change. Thus, a more nuanced, system-by-system approach may be needed when thinking about the resiliency of ecological networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Artificial neural networks (ANNs) have been widely applied to the resolution of complex biological problems. An important feature of neural models is that their implementation is not precluded by the theoretical distribution shape of the data used. Frequently, the performance of ANNs over linear or non-linear regression-based statistical methods is deemed to be significantly superior if suitable sample sizes are provided, especially in multidimensional and non-linear processes. The current work was aimed at utilising three well-known neural network methods in order to evaluate whether these models would be able to provide more accurate outcomes in relation to a conventional regression method in pupal weight predictions of Chrysomya megacephala, a species of blowfly (Diptera: Calliphoridae), using larval density (i.e. the initial number of larvae), amount of available food and pupal size as input data. It was possible to notice that the neural networks yielded more accurate performances in comparison with the statistical model (multiple regression). Assessing the three types of networks utilised (Multi-layer Perceptron, Radial Basis Function and Generalised Regression Neural Network), no considerable differences between these models were detected. The superiority of these neural models over a classical statistical method represents an important fact, because more accurate models may clarify several intricate aspects concerning the nutritional ecology of blowflies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bronze bug is an invasive Australian pest that has reached eucalypt production areas worldwide in <10 years. The fi rst record in South America was in 2005 in Argentina. Collaboration in the region towards a unifi ed strategy for the management of the bronze bug started soon after the dispersal of the pest into Brazil and Uruguay was confi rmed. Here, we present the main achievements of this collaboration in four main topics: 1) biology of the pest, 2) monitoring, 3) biological control, and 4) cooperative networks. Two mass rearing procedures have been implemented in the region with relative success, allowing basic biological studies on the pest. Continuous monitoring in the region for >5 years has provided a reasonable knowledge on seasonal patterns of T. peregrinus. Biological control strategies developed include the use of local natural enemies of T. peregrinus, the development of biopesticides, and the introduction of Cleruchoides noackae, an egg parasitoid of T. peregrinus from Australia. We review the main achievements in each country. Finally, a regional network of institutions, researchers, and students has strengthened in the region, providing a solid background for future collaboration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Congenital heart disease (CHD) occurs in similar to 1% of newborns. CHD arises from many distinct etiologies, ranging from genetic or genomic variation to exposure to teratogens, which elicit diverse cell and molecular responses during cardiac development. To systematically explore the relationships between CHD risk factors and responses, we compiled and integrated comprehensive datasets from studies of CHD in humans and model organisms. We examined two alternative models of potential functional relationships between genes in these datasets: direct convergence, in which CHD risk factors significantly and directly impact the same genes and molecules and functional convergence, in which risk factors significantly impact different molecules that participate in a discrete heart development network. We observed no evidence for direct convergence. In contrast, we show that CHD risk factors functionally converge in protein networks driving the development of specific anatomical structures (e.g., outflow tract, ventricular septum, and atrial septum) that are malformed by CHD. This integrative analysis of CHD risk factors and responses suggests a complex pattern of functional interactions between genomic variation and environmental exposures that modulate critical biological systems during heart development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background To understand the molecular mechanisms underlying important biological processes, a detailed description of the gene products networks involved is required. In order to define and understand such molecular networks, some statistical methods are proposed in the literature to estimate gene regulatory networks from time-series microarray data. However, several problems still need to be overcome. Firstly, information flow need to be inferred, in addition to the correlation between genes. Secondly, we usually try to identify large networks from a large number of genes (parameters) originating from a smaller number of microarray experiments (samples). Due to this situation, which is rather frequent in Bioinformatics, it is difficult to perform statistical tests using methods that model large gene-gene networks. In addition, most of the models are based on dimension reduction using clustering techniques, therefore, the resulting network is not a gene-gene network but a module-module network. Here, we present the Sparse Vector Autoregressive model as a solution to these problems. Results We have applied the Sparse Vector Autoregressive model to estimate gene regulatory networks based on gene expression profiles obtained from time-series microarray experiments. Through extensive simulations, by applying the SVAR method to artificial regulatory networks, we show that SVAR can infer true positive edges even under conditions in which the number of samples is smaller than the number of genes. Moreover, it is possible to control for false positives, a significant advantage when compared to other methods described in the literature, which are based on ranks or score functions. By applying SVAR to actual HeLa cell cycle gene expression data, we were able to identify well known transcription factor targets. Conclusion The proposed SVAR method is able to model gene regulatory networks in frequent situations in which the number of samples is lower than the number of genes, making it possible to naturally infer partial Granger causalities without any a priori information. In addition, we present a statistical test to control the false discovery rate, which was not previously possible using other gene regulatory network models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Recently, it was realized that the functional connectivity networks estimated from actual brain-imaging technologies (MEG, fMRI and EEG) can be analyzed by means of the graph theory, that is a mathematical representation of a network, which is essentially reduced to nodes and connections between them. Methods We used high-resolution EEG technology to enhance the poor spatial information of the EEG activity on the scalp and it gives a measure of the electrical activity on the cortical surface. Afterwards, we used the Directed Transfer Function (DTF) that is a multivariate spectral measure for the estimation of the directional influences between any given pair of channels in a multivariate dataset. Finally, a graph theoretical approach was used to model the brain networks as graphs. These methods were used to analyze the structure of cortical connectivity during the attempt to move a paralyzed limb in a group (N=5) of spinal cord injured patients and during the movement execution in a group (N=5) of healthy subjects. Results Analysis performed on the cortical networks estimated from the group of normal and SCI patients revealed that both groups present few nodes with a high out-degree value (i.e. outgoing links). This property is valid in the networks estimated for all the frequency bands investigated. In particular, cingulate motor areas (CMAs) ROIs act as ‘‘hubs’’ for the outflow of information in both groups, SCI and healthy. Results also suggest that spinal cord injuries affect the functional architecture of the cortical network sub-serving the volition of motor acts mainly in its local feature property. In particular, a higher local efficiency El can be observed in the SCI patients for three frequency bands, theta (3-6 Hz), alpha (7-12 Hz) and beta (13-29 Hz). By taking into account all the possible pathways between different ROI couples, we were able to separate clearly the network properties of the SCI group from the CTRL group. In particular, we report a sort of compensatory mechanism in the SCI patients for the Theta (3-6 Hz) frequency band, indicating a higher level of “activation” Ω within the cortical network during the motor task. The activation index is directly related to diffusion, a type of dynamics that underlies several biological systems including possible spreading of neuronal activation across several cortical regions. Conclusions The present study aims at demonstrating the possible applications of graph theoretical approaches in the analyses of brain functional connectivity from EEG signals. In particular, the methodological aspects of the i) cortical activity from scalp EEG signals, ii) functional connectivity estimations iii) graph theoretical indexes are emphasized in the present paper to show their impact in a real application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hierarchical organisation of biological systems plays a crucial role in the pattern formation of gene expression resulting from the morphogenetic processes, where autonomous internal dynamics of cells, as well as cell-to-cell interactions through membranes, are responsible for the emergent peculiar structures of the individual phenotype. Being able to reproduce the systems dynamics at different levels of such a hierarchy might be very useful for studying such a complex phenomenon of self-organisation. The idea is to model the phenomenon in terms of a large and dynamic network of compartments, where the interplay between inter-compartment and intra-compartment events determines the emergent behaviour resulting in the formation of spatial patterns. According to these premises the thesis proposes a review of the different approaches already developed in modelling developmental biology problems, as well as the main models and infrastructures available in literature for modelling biological systems, analysing their capabilities in tackling multi-compartment / multi-level models. The thesis then introduces a practical framework, MS-BioNET, for modelling and simulating these scenarios exploiting the potential of multi-level dynamics. This is based on (i) a computational model featuring networks of compartments and an enhanced model of chemical reaction addressing molecule transfer, (ii) a logic-oriented language to flexibly specify complex simulation scenarios, and (iii) a simulation engine based on the many-species/many-channels optimised version of Gillespie’s direct method. The thesis finally proposes the adoption of the agent-based model as an approach capable of capture multi-level dynamics. To overcome the problem of parameter tuning in the model, the simulators are supplied with a module for parameter optimisation. The task is defined as an optimisation problem over the parameter space in which the objective function to be minimised is the distance between the output of the simulator and a target one. The problem is tackled with a metaheuristic algorithm. As an example of application of the MS-BioNET framework and of the agent-based model, a model of the first stages of Drosophila Melanogaster development is realised. The model goal is to generate the early spatial pattern of gap gene expression. The correctness of the models is shown comparing the simulation results with real data of gene expression with spatial and temporal resolution, acquired in free on-line sources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well known that many realistic mathematical models of biological systems, such as cell growth, cellular development and differentiation, gene expression, gene regulatory networks, enzyme cascades, synaptic plasticity, aging and population growth need to include stochasticity. These systems are not isolated, but rather subject to intrinsic and extrinsic fluctuations, which leads to a quasi equilibrium state (homeostasis). The natural framework is provided by Markov processes and the Master equation (ME) describes the temporal evolution of the probability of each state, specified by the number of units of each species. The ME is a relevant tool for modeling realistic biological systems and allow also to explore the behavior of open systems. These systems may exhibit not only the classical thermodynamic equilibrium states but also the nonequilibrium steady states (NESS). This thesis deals with biological problems that can be treat with the Master equation and also with its thermodynamic consequences. It is organized into six chapters with four new scientific works, which are grouped in two parts: (1) Biological applications of the Master equation: deals with the stochastic properties of a toggle switch, involving a protein compound and a miRNA cluster, known to control the eukaryotic cell cycle and possibly involved in oncogenesis and with the propose of a one parameter family of master equations for the evolution of a population having the logistic equation as mean field limit. (2) Nonequilibrium thermodynamics in terms of the Master equation: where we study the dynamical role of chemical fluxes that characterize the NESS of a chemical network and we propose a one parameter parametrization of BCM learning, that was originally proposed to describe plasticity processes, to study the differences between systems in DB and NESS.