971 resultados para BETA-D-GLUCOSIDASE


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The transcriptome of the developing starchy endosperm of hexaploid wheat (Triticum aestivum) was determined using RNA-Seq isolated at five stages during grain fill. This resource represents an excellent way to identify candidate genes responsible for the starchy endosperm cell wall, which is dominated by arabinoxylan (AX), accounting for 70% of the cell wall polysaccharides, with 20% (1,3; 1,4)-beta-D-glucan, 7% glucomannan, and 4% cellulose. A complete inventory of transcripts of 124 glycosyltransferase (GT) and 72 glycosylhydrolase (GH) genes associated with cell walls is presented. The most highly expressed GT transcript (excluding those known to be involved in starch synthesis) was a GT47 family transcript similar to Arabidopsis (Arabidopsis thaliana) IRX10 involved in xylan extension, and the second most abundant was a GT61. Profiles for GT43 IRX9 and IRX14 putative orthologs were consistent with roles in AX synthesis. Low abundances were found for transcripts from genes in the acyl-coA transferase BAHD family, for which a role in AX feruloylation has been postulated. The relative expression of these was much greater in whole grain compared with starchy endosperm, correlating with the levels of bound ferulate. Transcripts associated with callose (GSL), cellulose (CESA), pectin (GAUT), and glucomannan (CSLA) synthesis were also abundant in starchy endosperm, while the corresponding cell wall polysaccharides were confirmed as low abundance (glucomannan and callose) or undetectable (pectin) in these samples. Abundant transcripts from GH families associated with the hydrolysis of these polysaccharides were also present, suggesting that they may be rapidly turned over. Abundant transcripts in the GT31 family may be responsible for the addition of Gal residues to arabinogalactan peptide.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Salmonella enterica is a zoonotic pathogen of clinical and veterinary significance, with over 2500 serovars. In previous work we compared two serovars displaying host associations inferred from isolation statistics. Here, to validate genome sequence data and to expand on the role of environmental metabolite constitution in host range determination we use a phenotypic microarray approach to assess the ability of these serovars to metabolise ~500 substrates at 25°C with oxygen (aerobic conditions) to represent the ex vivo environment and at 37°C with and without oxygen (aerobic/anaerobic conditions) to represent the in vivo environment. A total of 26 substrates elicited a significant difference in the rate of metabolism of which only one, D-galactonic acid-g-lactone, could be explained by the presence (S. Mbandaka) or the absence (S. Derby) of metabolic genes. We find that S. Mbandaka respires more efficiently at ambient temperatures and under aerobic conditions on 18 substrates including: glucosominic acid, saccharic acid, trehalose, fumaric acid, maltotriose, N-acetyl-D-glucosamine, N-acetyl-beta-D-mannosamine, fucose, L-serine and dihydroxy-acetone; whereas S. Derby is more metabolically competent anaerobically at 37°C for dipeptides, glutamine-glutamine, alanine-lysine, asparagine-glutamine and nitrogen sources glycine and nitrite. We conclude that the specific phenotype cannot be reliably predicted from the presence of metabolic genes directly relating to the metabolic pathways under study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Isolated from the mycelium, of Scedosporium prolificans were complex glycoproteins (RMP-Sp), with three structurally related components (HPSEC). RMP-Sp contained 35% protein and 62% carbohydrate with Rha, Ara, Man, Gal, Glc, and GlcNH(2) in a 18:1:24:8:6:5 molar ratio. Methylation analysis showed mainly nonreducing end- of Galp (13%), nonreducing end- (9%),2-O-(13%), and 3-O-subst. Rhap (7%), nonreducing end-(11%), 2-O-(10%), 3-O-(14%), and 2,6-di-O-subst. Manp units (13%). Mild reductive P-elimination of RMP-Sp gave alpha-L-Rhap-(1-->2)-alpha-L-Rhap-(1-->3)-alpha-L-Rhap-(1-->3)-alpha-D-Manp-(1-->2)-D-Man-ol, with Man-ol substituted at O-6 with beta-D-Galp units, a related pentasaccharide lacking beta-D-Galp units, and beta-D-Galp-(1-->6)-[alpha-D-Manp-(1-->2)]-D-Man-ol in a 16:3:1 w/w ratio. Traces of Man-ol and Rha-ol were detected. ESI-MS showed HexHex-o1 and HCX(3-6)Hex-ol components. Three rhamnosyl units were peeled off successively from the penta- and hexasaccharide by ESI-MS-MS. The carbohydrate epitopes of RMP-Sp differ from those of the glycoprotein of Pseudallescheria boydii, a related opportunistic pathogen. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Asthma is a chronic respiratory disease characterized by airway inflammation and airway hyperresponsiveness (AHR). One strategy to treat allergic diseases is the development of new drugs. Flavonoids are compounds derived from plants and are known to have antiallergic, anti-inflammatory, and antioxidant properties. To investigate whether the flavonoid kaempferol glycoside 3-O-[beta-D-glycopiranosil-(1 -> 6)-alpha-L-ramnopiranosil]-7-O-alpha-L-ramnopiranosil-kaempferol (GRRK) would be capable of modulating allergic airway disease (AAD) either as a preventive (GRRK P) or curative (GRRK C) treatment in an experimental model of asthma. At weekly intervals, BALB/c mice were subcutaneously (sc) sensitized twice with ovalbumin (OVA)/alum and challenged twice with OVA administered intranasally. To evaluate any preventive effects GRRK was administered 1 h (hour) before each OVA-sensitization and challenge, while to analyze the curative effects mice were first sensitized with OVA, followed by GRRK given at day 18 through 21. The onset: of AAD was evaluated 24 h after the last OVA challenge. Both treatments resulted in a dose-dependent reduction in total leukocyte and eosinophil counts in the bronchoalveolar lavage fluid (BAL). GRRK also decreased CD4(+), B220(+), MHC class II and CD40 molecule expressions in BAL cells. Histology and lung mechanic showed that GRRK suppressed mucus production and ameliorated the AHR induced by OVA challenge. Furthermore, GRRK impaired Th2 cytokine production (IL-5 and IL-13) and did not induce a Th1 pattern of inflammation. These findings demonstrate that GRRK treatment before or after established allergic lung disease down-regulates key asthmatic features. Therefore. GRRK has a potential clinical use for the treatment of allergic asthma. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The crystalline structure of mangiferin (= 2-beta-D-glucopyranosyl-1,3,6,7-tetrahydroxy-9H-xanthen-9-one; 1), a biologically active xanthenone C-glycoside, isolated from the stem bark of Mangifera indica (Anacardiaceae), was unambiguously determined by single-crystal X-ray diffraction (XRD). The crystal structure is summarized as follows: triclinic, P1, a = 7.6575(5), b = 11.2094(8), c = 11.8749(8) angstrom, alpha = 79.967(5), beta = 87.988(4), gamma = 72.164(4)degrees, V = 955.3(1) angstrom(3), and Z = 2. The structure also shows two molecules in the asymmetric unit cell and five crystallization H2O molecules. The packing is stabilized by several intermolecular H-bonds involving either the two symmetry-independent mangiferin molecules 1a and 1b, or the H2O ones.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The complex mer-[RuCl(3)(dppb)(H(2)O)] [dppb = 1,4-bis(diphenylphosphino)butane] was used as a precursor in the synthesis of the complexes tc-[RuCl(2)(CO)(2)(dppb)], ct-[RuCl(2)(CO)(2)(dppb)]. cis-[RuCl(2)(dppb)(Cl-bipy)], [RuCl(2Ac4mT)(dppb)] (2Ac4mT = N(4)-meta-tolyl-2-acetylpyridine thiosemicarbazone ion) and trans-[RuCl(2)(dppb)(mang)] (mang = mangiferin or 1,3,6,7-tetrahydroxyxanthone-C2-beta-D-glucoside) complexes. For the synthesis of Run complexes, the Ru(III) atom in mer-[RuCl(3)(dppb)(H(2)O)] may be reduced by H(2)(g), forming the intermediate [Ru(2)Cl(4)(dppb)(2)], or by a ligand (such as H2Ac4mT or mangiferin). The X-ray structures of the cis-[RuCl(2)(dppb)(Cl-bipy)], tc-[RuCl(2)(CO)(2)(dppb)] and [RuCl(2Ac4mT)(dPpb)] complexes were determined. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Because of its elevated cellulolytic activity, the filamentous fungus Trichoderma harzianum has a considerable potential in biomass hydrolysis applications. Trichoderma harzianum cellobiohydrolase I (ThCBHI), an exoglucanase, is an important enzyme in the process of cellulose degradation. Here, we report an easy single-step ion-exchange chromatographic method for purification of ThCBHI and its initial biophysical and biochemical characterization. The ThCBHI produced by induction with microcrystalline cellulose under submerged fermentation was purified on DEAE-Sephadex A-50 media and its identity was confirmed by mass spectrometry. The ThCBHI biochemical characterization showed that the protein has a molecular mass of 66 kDa and pi of 5.23. As confirmed by small-angle X-ray scattering (SAXS), both full-length ThCBHI and its catalytic core domain (CCD) obtained by digestion with papain are monomeric in solution. Secondary structure analysis of ThCBHI by circular dichroism revealed alpha-helices and beta-strands contents in the 28% and 38% range, respectively. The intrinsic fluorescence emission maximum of 337 nm was accounted for as different degrees of exposure of ThCBHI tryptophan residues to water. Moreover, ThCBHI displayed maximum activity at pH 5.0 and temperature of 50 degrees C with specific activities against Avicel and p-nitrophenyl-beta-D-cellobioside of 1.25 U/mg and 1.53 U/mg, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chitosan (alpha alpha-(1-4)-amino-2-deoxy-beta beta-D-glucan) is a deacetylated form of chitin, a polysaccharide from crustacean shells. Its unique characteristics, such as positive charge, biodegradability, biocompatibility, nontoxicity, and rigid structure, make this macromolecule ideal for an oral vaccine delivery system. We prepared reverse-phase evaporation vesicles (REVs) sandwiched by chitosan (Chi) and polyvinylic alcohol (PVA). However, in this method, there are still some problems to be circumvented related to protein stabilization. During the inverted micelle phase of protein nanoencapsulation, hydrophobic interfaces are expanded, leading to interfacial adsorption, followed by protein unfolding and aggregation. Here, spectroscopic and immunological techniques were used to ascertain the effects of the Hoffmeister series ions on diphtheria toxoid (Dtxd) stability during the inverted micelle phase. A correlation was established between the salts used in aqueous solutions and the changes in Dtxd solubility and conformation. Dtxd alpha alpha-helical content was quite stable, which led us to conclude that encapsulation occurred without protein aggregation or without exposition of hydrophobic residues. Dtxd aggregation was 98% avoided by the kosmotropic, PO

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The methanol extract from aerial parts of the Peperomia blanda (Piperaceae) yielded two C-glycosyl-flavones. Their structures were elucidated on the basis of extensive spectroscopic analysis, including 1D and 2D NMR, chemical transformation and comparison with the related known compounds. The structure of the new flavonoids were established as 4`-methoxy-vitexin 7-O-beta-D-xylopyranoside (1) (7-O-beta-D-xylopyranosyl-8-C-beta-D-glucopyranosyl-4`-methoxy-apigenin) and vicenin-2 (2). The antioxidant activity of both compounds was investigated using the DPPH assay. Both compounds showed only modest activity, with IC50 values of 357.2 mu M for 1, and 90.5 mu M for 2. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work. XG extracted from Tamarindus indica (XGT) and Copaifera langsdorffii (XGC) seeds were deposited onto Si wafers as thin films. The characteristics of XGT and XGC adsorbed layers were compared with a commercial XG sample (TKP, Tamarind kernel powder) by ellipsometry, and atomic force microscopy (AFM). Moreover, the adsorption of oxidized derivative of XGT (To60) onto amino-terminated Si wafers and the immobilization of bovine serum albumin (BSA) onto polysaccharides covered wafers, as a function of pH, were also investigated. The XG samples presented molar ratios Glc:Xyl:Gal of 2.4:2.1:1 (XGC) 2.8: 23: 1 (XGT) and 1.91.91 (TKP). The structure of XGT and XGC was determined by O-methy alditol acetate derivatization and showed similar features, but XGC confirmed the presence of more alpha-D-Xyl branches due to more beta-D-Gal ends. XGT deposited onto Si adsorbed as fibers and small entities uniformly distributed, as evidenced by AFM, while TPK and XGC formed larger aggregates. The thickness of To60 onto amino-terminated surface was similar to that determined for XGT onto Si wafers. A maximum in the adsorbed amount of BSA occurred close to its isoelectric point (5.5). These findings indicate that XGT and To60 are potential materials for the development of biomaterials and biotechnological devices. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The oxazaphosphorines including cyclophosphamide (CPA, Cytoxan, or Neosar), ifosfamide (IFO, Ifex) and trofosfamide (Ixoten) represent an important group of therapeutic agents due to their substantial antitumor and immunomodulating activity. However, several intrinsic limitations have been uncounted during the clinical use of these oxazaphosphorines, including substantial pharmacokinetic variability, resistance and severe host toxicity. To circumvent these problems, new oxazaphosphorines derivatives have been designed and evaluated with an attempt to improve the selectivity and response with reduced host toxicity. These include mafosfamide (NSC 345842), glufosfamide (D19575, β-Dglucosylisophosphoramide mustard), S-(-)-bromofosfamide (CBM-11), NSC 612567 (aldophosphamide perhydrothiazine) and NSC 613060 (aldophosphamide thiazolidine). Mafosfamide is an oxazaphosphorine analog that is a chemically stable 4-thioethane sulfonic acid salt of 4-hydroxy-CPA. Glufosfamide is IFO derivative in which the isophosphoramide mustard, the alkylating metabolite of IFO, is glycosidically linked to a β-D-glucose molecule. Phase II studies of glufosfamide in the treatment of pancreatic cancer, non-small cell lung cancer (NCSLC), and recurrent glioblastoma multiform (GBM) have recently completed and Phase III trials are ongoing, while Phase I studies of intrathecal mafosfamide have recently completed for the treatment of meningeal malignancy secondary to leukemia, lymphoma, or solid tumors. S-(-)- bromofosfamide is a bromine-substituted IFO analog being evaluated in a few Phase I clinical trials. The synthesis and development of novel oxazaphosphorine analogs with favourable pharmacokinetic and pharmacodynamic properties still constitutes a great challenge for medicinal chemists and cancer pharmacologists.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AMPK plays a central role in influencing fuel usage and selection. The aim of this study was to analyze the impact of low-dose AMP analog 5-aminoimidazole-4-carboxamide-1-ß-D-ribosyl monophosphate (ZMP) on whole body glucose turnover and skeletal muscle (SkM) glucose metabolism. Dogs were restudied after prior 48-h fatty acid oxidation (FAOX) blockade by methylpalmoxirate (MP; 5 x 12 hourly 10 mg/kg doses). During the basal equilibrium period (0–150 min), fasting dogs (n = 8) were infused with [3-3H]glucose followed by either 2-h saline or AICAR (1.5–2.0 mg·kg–1·min–1) infusions. SkM was biopsied at completion of each study. On a separate day, the same protocol was undertaken after 48-h in vivo FAOX blockade. The AICAR and AICAR + MP studies were repeated in three chronic alloxan-diabetic dogs. AICAR produced a transient fall in plasma glucose and increase in insulin and a small decline in free fatty acid (FFA). Parallel increases in hepatic glucose production (HGP), glucose disappearance (Rd tissue), and glycolytic flux (GF) occurred, whereas metabolic clearance rate of glucose (MCRg) did not change significantly. Intracellular SkM glucose, glucose 6-phosphate, and glycogen were unchanged. Acetyl-CoA carboxylase (ACC~pSer221) increased by 50%. In the AICAR + MP studies, the metabolic responses were modified: the glucose was lower over 120 min, only minor changes occurred with insulin and FFA, and HGP and Rd tissue responses were markedly attenuated, but MCRg and GF increased significantly. SkM substrates were unchanged, but ACC~pSer221 rose by 80%. Thus low-dose AICAR leads to increases in HGP and SkM glucose uptake, which are modified by prior FAox blockade.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The oxazaphosphorines including cyclophosphamide (CPA), ifosfamide (IFO), and trofosfamide represent an important group of therapeutic agents due to their substantial antitumor and immuno-modulating activity. CPA is widely used as an anticancer drug, an immunosuppressant, and for the mobilization of hematopoetic progenitor cells from the bone marrow into peripheral blood prior to bone marrow transplantation for aplastic anemia, leukemia, and other malignancies. New oxazaphosphorines derivatives have been developed in an attempt to improve selectivity and response with reduced toxicity. These derivatives include mafosfamide (NSC 345842), glufosfamide (D19575, β-D-glucosylisophosphoramide mustard), NSC 612567 (aldophosphamide perhydrothiazine), and NSC 613060 (aldophosphamide thiazolidine). This review highlights the metabolism and transport of these oxazaphosphorines (mainly CPA and IFO, as these two oxazaphosphorine drugs are the most widely used alkylating agents) and the clinical implications. Both CPA and IFO are prodrugs that require activation by hepatic cytochrome P450 (CYP)-catalyzed 4-hydroxylation, yielding cytotoxic nitrogen mustards capable of reacting with DNA molecules to form crosslinks and lead to cell apoptosis and/or necrosis. Such prodrug activation can be enhanced within tumor cells by the CYP-based gene directed-enzyme prodrug therapy (GDEPT) approach. However, those newly synthesized oxazaphosphorine derivatives such as glufosfamide, NSC 612567 and NSC 613060, do not need hepatic activation. They are activated through other enzymatic and/or non-enzymatic pathways. For example, both NSC 612567 and NSC 613060 can be activated by plain phosphodiesterase (PDEs) in plasma and other tissues or by the high-affinity nuclear 3'-5' exonucleases associated with DNA polymerases, such as DNA polymerases and ε. The alternative CYP-catalyzed inactivation pathway by N-dechloroethylation generates the neurotoxic and nephrotoxic byproduct chloroacetaldehyde (CAA). Various aldehyde dehydrogenases (ALDHs) and glutathione S-transferases (GSTs) are involved in the detoxification of oxazaphosphorine metabolites. The metabolism of oxazaphosphorines is auto-inducible, with the activation of the orphan nuclear receptor pregnane X receptor (PXR) being the major mechanism. Oxazaphosphorine metabolism is affected by a number of factors associated with the drugs (e.g., dosage, route of administration, chirality, and drug combination) and patients (e.g., age, gender, renal and hepatic function). Several drug transporters, such as breast cancer resistance protein (BCRP), multidrug resistance associated proteins (MRP1, MRP2, and MRP4) are involved in the active uptake and efflux of parental oxazaphosphorines, their cytotoxic mustards and conjugates in hepatocytes and tumor cells. Oxazaphosphorine metabolism and transport have a major impact on pharmacokinetic variability, pharmacokinetic-pharmacodynamic relationship, toxicity, resistance, and drug interactions since the drug-metabolizing enzymes and drug transporters involved are key determinants of the pharmacokinetics and pharmacodynamics of oxazaphosphorines. A better understanding of the factors that affect the metabolism and transport of oxazaphosphorines is important for their optional use in cancer chemotherapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fractionation of the hot water extract of Chlorella pyrenoidosa was performed using a combination of ethanol precipitation, size exclusion chromatography, and anion exchange chromatography. One fraction contained a new polysaccharide, and this compound was shown to be a 1→2-linked β-d-galactofuranan from its 1D and 2D 1H and 13C NMR spectra, with a molecular weight of 15 kDa from DOSY NMR measurements. A number of other fractions were shown to have the same repeating unit as the previously identified arabinogalactan. However, arabinogalactans from different fractions were shown by DOSY NMR to have different molecular weights, which ranged from 27 to 1020 kDa. Agreement with molecular weights measured for some of these fractions by SEC-MALS was very good, further confirming the relationship established by Viel et al. between molecular weights of neutral polysaccharides and self-diffusion coefficients. The smaller molecular weight polysaccharides, the galactofuranan and the 27 and 50 kDa arabinogalactans, were shown to be close to monodisperse by analysis of the distributions of the self-diffusion coefficients for the polymers. The larger arabinogalactans had considerable variation in their molecular weights (188 ± 109 kDa and 1020 ± 370 kDa). Only the two larger arabinogalactans showed immunostimulatory activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim: To investigate the effects of globular adiponectin (gAd) on gene expression and whether these effects are mediated through 3',5'-cyclic monophosphate-activated protein kinase in skeletal muscle myotubes obtained from lean, obese and obese diabetic individuals.

Methods: Rectus abdominus muscle biopsies were obtained from surgical patients to establish primary skeletal muscle cell cultures. Three distinct primary cell culture groups were established (lean, obese and obese diabetic; n = 7 in each group). Once differentiated, these cultures were then exposed to gAd or 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) for 6 h.

Results: Stimulation with gAd decreased pyruvate dehydrogenase kinase 4 (PDK4) gene expression in the obese and diabetic samples (p ≤ 0.05) and increased cytochrome c oxidase (COX) subunit 4 (COXIV) gene expression in the myotubes derived from lean individuals only (p < 0.05). AICAR treatment also decreased PDK4 gene expression in the obese- and diabetic-derived myotubes (p ≤ 0.05) and increased the gene expression of the mitochondrial gene, COXIII, in the lean-derived samples only (p < 0.05).

Conclusions: This study demonstrated distinct disparity between myotubes derived from lean compared with obese and obese diabetic individuals following gAd and AICAR treatment. Further understanding of the regulation of PDK4 in obese and diabetic skeletal muscle and its interaction with adiponectin signalling is required as this appears to be an important early molecular event in these disease states that may improve blood glucose control and metabolic flux.