948 resultados para BAYESIAN NETWORK
Resumo:
1. Expert knowledge continues to gain recognition as a valuable source of information in a wide range of research applications. Despite recent advances in defining expert knowledge, comparatively little attention has been given to how to view expertise as a system of interacting contributory factors, and thereby, to quantify an individual’s expertise. 2. We present a systems approach to describing expertise that accounts for many contributing factors and their interrelationships, and allows quantification of an individual’s expertise. A Bayesian network (BN) was chosen for this purpose. For the purpose of illustration, we focused on taxonomic expertise. The model structure was developed in consultation with professional taxonomists. The relative importance of the factors within the network were determined by a second set of senior taxonomists. This second set of experts (i.e. supra-experts) also provided validation of the model structure. Model performance was then assessed by applying the model to hypothetical career states in the discipline of taxonomy. Hypothetical career states were used to incorporate the greatest possible differences in career states and provide an opportunity to test the model against known inputs. 3. The resulting BN model consisted of 18 primary nodes feeding through one to three higher-order nodes before converging on the target node (Taxonomic Expert). There was strong consistency among node weights provided by the supra-experts for some nodes, but not others. The higher order nodes, “Quality of work” and “Total productivity”, had the greatest weights. Sensitivity analysis indicated that although some factors had stronger influence in the outer nodes of the network, there was relatively equal influence of the factors leading directly into the target node. Despite differences in the node weights provided by our supra-experts, there was remarkably good agreement among assessments of our hypothetical experts that accurately reflected differences we had built into them. 4. This systems approach provides a novel way of assessing the overall level of expertise of individuals, accounting for multiple contributory factors, and their interactions. Our approach is adaptable to other situations where it is desirable to understand components of expertise.
Resumo:
This paper, which was part of a larger study, reports on a survey that explored the perceptions of 69 graduate supervisors regarding issues in supervision from three higher education institutions in Australia. Factors that contribute to student success in higher education research degrees are many and diverse, including a complex dance of student factors, supervisor factors, and their supervisory context factors, and those informed by cultural and language differences. Therefore, a complex system approach using Bayesian network modelling was used to explore how student and/or supervisor factors influence the success of culturally and linguistically diverse (CALD) graduate students in Engineering and IT. Findings suggest that key factors include the experience of supervisors in terms of experience with the Australian higher education system, personal cross-cultural experience.
Resumo:
Sustainability is a key driver for decisions in the management and future development of industries. The World Commission on Environment and Development (WCED, 1987) outlined imperatives which need to be met for environmental, economic and social sustainability. Development of strategies for measuring and improving sustainability in and across these domains, however, has been hindered by intense debate between advocates for one approach fearing that efforts by those who advocate for another could have unintended adverse impacts. Studies attempting to compare the sustainability performance of countries and industries have also found ratings of performance quite variable depending on the sustainability indices used. Quantifying and comparing the sustainability of industries across the triple bottom line of economy, environment and social impact continues to be problematic. Using the Australian dairy industry as a case study, a Sustainability Scorecard, developed as a Bayesian network model, is proposed as an adaptable tool to enable informed assessment, dialogue and negotiation of strategies at a global level as well as being suitable for developing local solutions.
Resumo:
Over the past decade, vision-based tracking systems have been successfully deployed in professional sports such as tennis and cricket for enhanced broadcast visualizations as well as aiding umpiring decisions. Despite the high-level of accuracy of the tracking systems and the sheer volume of spatiotemporal data they generate, the use of this high quality data for quantitative player performance and prediction has been lacking. In this paper, we present a method which predicts the location of a future shot based on the spatiotemporal parameters of the incoming shots (i.e. shot speed, location, angle and feet location) from such a vision system. Having the ability to accurately predict future short-term events has enormous implications in the area of automatic sports broadcasting in addition to coaching and commentary domains. Using Hawk-Eye data from the 2012 Australian Open Men's draw, we utilize a Dynamic Bayesian Network to model player behaviors and use an online model adaptation method to match the player's behavior to enhance shot predictability. To show the utility of our approach, we analyze the shot predictability of the top 3 players seeds in the tournament (Djokovic, Federer and Nadal) as they played the most amounts of games.
Resumo:
Many interacting factors contribute to a student's choice of a university. This study takes a systems perspective of the choice and develops a Bayesian Network to represent and quantify these factors and their interactions. The systems model is illustrated through a small study of traditional school leavers in Australia, and highlights similarities and differences between universities' perceptions of student choices, students' perceptions of factors that they should consider and how students really make choices. The study shows the range of information that can be gained from this approach, including identification of important factors and scenario assessment.
Resumo:
Sustainability is a key driver for decisions in the management and future development of organisations and industries. However, quantifying and comparing sustainability across the triple bottom line (TBL) of economy, environment and social impact, has been problematic. There is a need for a tool which can measure the complex interactions within and between the environmental, economic and social systems which affect the sustainability of an industry in a transparent, consistent and comparable way. The authors acknowledge that there are currently numerous ways in which sustainability is measured and multiple methodologies in how these measurement tools were designed. The purpose of this book is to showcase how Bayesian network modelling can be used to identify and measure environmental, economic and social sustainability variables and to understand their impact on and interaction with each other. This book introduces the Sustainability Scorecard, and describes it through a case study on sustainability of the Australian dairy industry. This study was conducted in collaboration with the Australian dairy industry.
Resumo:
This paper presents a layered framework for the purposes of integrating different Socio-Technical Systems (STS) models and perspectives into a whole-of-systems model. Holistic modelling plays a critical role in the engineering of STS due to the interplay between social and technical elements within these systems and resulting emergent behaviour. The framework decomposes STS models into components, where each component is either a static object, dynamic object or behavioural object. Based on existing literature, a classification of the different elements that make up STS, whether it be a social, technical or a natural environment element, is developed; each object can in turn be classified according to the STS elements it represents. Using the proposed framework, it is possible to systematically decompose models to an extent such that points of interface can be identified and the contextual factors required in transforming the component of one model to interface into another is obtained. Using an airport inbound passenger facilitation process as a case study socio-technical system, three different models are analysed: a Business Process Modelling Notation (BPMN) model, Hybrid Queue-based Bayesian Network (HQBN) model and an Agent Based Model (ABM). It is found that the framework enables the modeller to identify non-trivial interface points such as between the spatial interactions of an ABM and the causal reasoning of a HQBN, and between the process activity representation of a BPMN and simulated behavioural performance in a HQBN. Such a framework is a necessary enabler in order to integrate different modelling approaches in understanding and managing STS.
Resumo:
Objective To synthesise recent research on the use of machine learning approaches to mining textual injury surveillance data. Design Systematic review. Data sources The electronic databases which were searched included PubMed, Cinahl, Medline, Google Scholar, and Proquest. The bibliography of all relevant articles was examined and associated articles were identified using a snowballing technique. Selection criteria For inclusion, articles were required to meet the following criteria: (a) used a health-related database, (b) focused on injury-related cases, AND used machine learning approaches to analyse textual data. Methods The papers identified through the search were screened resulting in 16 papers selected for review. Articles were reviewed to describe the databases and methodology used, the strength and limitations of different techniques, and quality assurance approaches used. Due to heterogeneity between studies meta-analysis was not performed. Results Occupational injuries were the focus of half of the machine learning studies and the most common methods described were Bayesian probability or Bayesian network based methods to either predict injury categories or extract common injury scenarios. Models were evaluated through either comparison with gold standard data or content expert evaluation or statistical measures of quality. Machine learning was found to provide high precision and accuracy when predicting a small number of categories, was valuable for visualisation of injury patterns and prediction of future outcomes. However, difficulties related to generalizability, source data quality, complexity of models and integration of content and technical knowledge were discussed. Conclusions The use of narrative text for injury surveillance has grown in popularity, complexity and quality over recent years. With advances in data mining techniques, increased capacity for analysis of large databases, and involvement of computer scientists in the injury prevention field, along with more comprehensive use and description of quality assurance methods in text mining approaches, it is likely that we will see a continued growth and advancement in knowledge of text mining in the injury field.
Resumo:
Peak electricity demand requires substantial investment to update transmission, distribution and generation infrastructure. A successful community peak demand reduction project was examined to identify residential consumer motivational and contextual factors involved in their decision to adopt/not adopt interventions. Energy professionals actively worked to achieve community 'peer' membership and by becoming a trusted information source, facilitated voluntary home energy assessment requests from over 80% of the residential community. By combining and tailoring interventions to the specific needs and motivations of individual householders and the community, interventions promoting energy conservation and efficiency can be effective in achieving sustained reduction in peak demand.
Resumo:
Extensive resources are allocated to managing vertebrate pests, yet spatial understanding of pest threats, and how they respond to management, is limited at the regional scale where much decision-making is undertaken. We provide regional-scale spatial models and management guidance for European rabbits (Oryctolagus cuniculus) in a 260,791 km(2) region in Australia by determining habitat suitability, habitat susceptibility and the effects of the primary rabbit management options (barrier fence, shooting and baiting and warren ripping) or changing predation or disease control levels. A participatory modelling approach was used to develop a Bayesian network which captured the main drivers of suitability and spread, which in turn was linked spatially to develop high resolution risk maps. Policy-makers, rabbit managers and technical experts were responsible for defining the questions the model needed to address, and for subsequently developing and parameterising the model. Habitat suitability was determined by conditions required for warren-building and by above-ground requirements, such as food and harbour, and habitat susceptibility by the distance from current distributions, habitat suitability, and the costs of traversing habitats of different quality. At least one-third of the region had a high probability of being highly suitable (support high rabbit densities), with the model supported by validation. Habitat susceptibility was largely restricted by the current known rabbit distribution. Warren ripping was the most effective control option as warrens were considered essential for rabbit persistence. The anticipated increase in disease resistance was predicted to increase the probability of moderately suitable habitat becoming highly suitable, but not increase the at-risk area. We demonstrate that it is possible to build spatial models to guide regional-level management of vertebrate pests which use the best available knowledge and capture fine spatial-scale processes.
Resumo:
In this Thesis, we develop theory and methods for computational data analysis. The problems in data analysis are approached from three perspectives: statistical learning theory, the Bayesian framework, and the information-theoretic minimum description length (MDL) principle. Contributions in statistical learning theory address the possibility of generalization to unseen cases, and regression analysis with partially observed data with an application to mobile device positioning. In the second part of the Thesis, we discuss so called Bayesian network classifiers, and show that they are closely related to logistic regression models. In the final part, we apply the MDL principle to tracing the history of old manuscripts, and to noise reduction in digital signals.
Resumo:
The paper presents an innovative approach to modelling the causal relationships of human errors in rail crack incidents (RCI) from a managerial perspective. A Bayesian belief network is developed to model RCI by considering the human errors of designers, manufactures, operators and maintainers (DMOM) and the causal relationships involved. A set of dependent variables whose combinations express the relevant functions performed by each DMOM participant is used to model the causal relationships. A total of 14 RCI on Hong Kong’s mass transit railway (MTR) from 2008 to 2011 are used to illustrate the application of the model. Bayesian inference is used to conduct an importance analysis to assess the impact of the participants’ errors. Sensitivity analysis is then employed to gauge the effect the increased probability of occurrence of human errors on RCI. Finally, strategies for human error identification and mitigation of RCI are proposed. The identification of ability of maintainer in the case study as the most important factor influencing the probability of RCI implies the priority need to strengthen the maintenance management of the MTR system and that improving the inspection ability of the maintainer is likely to be an effective strategy for RCI risk mitigation.
Resumo:
针对大规模计算机网络的脆弱性评估,提出了一种基于贝叶斯网络近似推理的评估方法,对网络各组件和影响网络安全的因素进行建模,采用模型检测工具生成攻击状态转移图,描述网络脆弱性的利用过程,通过采用随机采样的方法对网络的攻击状态转移图进行近似推理,经过对采样样本的统计分析得到网络脆弱性评估的量化结果,为提升网络的安全性能提供理论依据。