965 resultados para BASAL GANGLIA


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Basal ganglia and brain stem nuclei are involved in the pathophysiology of various neurological and neuropsychiatric disorders. Currently available structural T1-weighted (T1w) magnetic resonance images do not provide sufficient contrast for reliable automated segmentation of various subcortical grey matter structures. We use a novel, semi-quantitative magnetization transfer (MT) imaging protocol that overcomes limitations in T1w images, which are mainly due to their sensitivity to the high iron content in subcortical grey matter. We demonstrate improved automated segmentation of putamen, pallidum, pulvinar and substantia nigra using MT images. A comparison with segmentation of high-quality T1w images was performed in 49 healthy subjects. Our results show that MT maps are highly suitable for automated segmentation, and so for multi-subject morphometric studies with a focus on subcortical structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In advanced Parkinson's disease (PD), the emergence of symptoms refractory to conventional therapy poses therapeutic challenges. The success of deep brain stimulation (DBS) and advances in the understanding of the pathophysiology of PD have raised interest in noninvasive brain stimulation as an alternative therapeutic tool. The rationale for its use draws from the concept that reversing abnormalities in brain activity and physiology thought to cause the clinical deficits may restore normal functioning. Currently the best evidence in support of this concept comes from DBS, which improves motor deficits, and modulates brain activity and motor cortex physiology, although whether a causal interaction exists remains largely undetermined. Most trials of noninvasive brain stimulation in PD have applied repetitive transcranial magnetic stimulation (rTMS), targeting the motor cortex. Current studies suggest a possible therapeutic potential for rTMS and transcranial direct current stimulation (tDCS), but clinical effects so far have been small and negligible with regard to functional independence and quality of life. Approaches to potentiate the efficacy of rTMS include increasing stimulation intensity and novel stimulation parameters that derive their rationale from studies on brain physiology. These novel parameters are intended to simulate normal firing patterns or to act on the hypothesized role of oscillatory activity in the motor cortex and basal ganglia with regard to motor control and its contribution to the pathogenesis of motor disorders. Noninvasive brain stimulation studies will enhance our understanding of PD pathophysiology and might provide further evidence for potential therapeutic applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION: Inhibitory control refers to our ability to suppress ongoing motor, affective or cognitive processes and mostly depends on a fronto-basal brain network. Inhibitory control deficits participate in the emergence of several prominent psychiatric conditions, including attention deficit/hyperactivity disorder or addiction. The rehabilitation of these pathologies might therefore benefit from training-based behavioral interventions aiming at improving inhibitory control proficiency and normalizing the underlying neurophysiological mechanisms. The development of an efficient inhibitory control training regimen first requires determining the effects of practicing inhibition tasks. METHODS: We addressed this question by contrasting behavioral performance and electrical neuroimaging analyses of event-related potentials (ERPs) recorded from humans at the beginning versus the end of 1 h of practice on a stop-signal task (SST) involving the withholding of responses when a stop signal was presented during a speeded auditory discrimination task. RESULTS: Practicing a short SST improved behavioral performance. Electrophysiologically, ERPs differed topographically at 200 msec post-stimulus onset, indicative of the engagement of distinct brain network with learning. Source estimations localized this effect within the inferior frontal gyrus, the pre-supplementary motor area and the basal ganglia. CONCLUSION: Our collective results indicate that behavioral and brain responses during an inhibitory control task are subject to fast plastic changes and provide evidence that high-order fronto-basal executive networks can be modified by practicing a SST.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Our understanding of how genotype determines phenotype in primary dystonia is limited. Familial young-onset primary dystonia is commonly due to the DYT1 gene mutation. A critical question, given the 30% penetrance of clinical symptoms in DYT1 mutation carriers, is why the same genotype leads to differential clinical expression and whether non-DYT1 adult-onset primary dystonia, with and without family history share pathophysiological mechanisms with DYT1 dystonia. This study examines the relationship between dystonic phenotype and the DYT1 gene mutation by monitoring whole-brain structure using voxel-based morphometry. We acquired magnetic resonance imaging data of symptomatic and asymptomatic DYT1 mutation carriers, of non-DYT1 primary dystonia patients, with and without family history and control subjects with normal DYT1 alleles. By crossing the factors genotype and phenotype we demonstrate a significant interaction in terms of brain anatomy confined to the basal ganglia bilaterally. The explanation for this effect differs according to both gene and dystonia status: non-DYT1 adult-onset dystonia patients and asymptomatic DYT1 carriers have significantly larger basal ganglia compared to healthy subjects and symptomatic DYT1 mutation carriers. There is a significant negative correlation between severity of dystonia and basal ganglia size in DYT1 mutation carriers. We propose that differential pathophysiological and compensatory mechanisms lead to brain structure changes in non-DYT1 primary adult-onset dystonias and DYT1 gene carriers. Given the range of age of onset, there may be differential genetic modulation of brain development that in turn determines clinical expression. Alternatively, a DYT1 gene dependent primary defect of motor circuit development may lead to stress-induced remodelling of the basal ganglia and hence dystonia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Patients with the early-onset Alzheimer's disease P117L mutation in the presenilin-1 gene (PS-1) present pathological hallmarks in the hippocampus, the frontal cortex and the basal ganglia. In the present work we determined by immunohistochemistry which brain regions were injured in the transgenic PS-1 P117L mice, in comparison to their littermates, the B6D2 mice. Furthermore, as these regions are involved in novelty detection, we investigated the behavior of these mice in tests for object and place novelty recognition. Limited numbers of senile plaques and neurofibrillary tangles were detected in aged PS-1 P117L mice in the CA1 only, indicating that the disease is restrained to an initial neuropathological stage. Western blots showed a change in PSD-95 expression (p=0.03), not in NR2A subunit, NR2B subunit and synaptophysin expressions in the frontal cortex, suggesting specific synaptic alterations. The behavioral tests repeatedly revealed, despite a non-significant preference for object or place novelty, maladaptive exploratory behavior of the PS-1 P117L mice in novel environmental conditions, not due to locomotor problems. These mice, unlike the B6D2 mice, were less inhibited to visit the center of the cages (p=0.01) and they continued to move excessively in the presence of a displaced object (p=0.021). Overall, the PS-1 P117L mice appear to be in an initial Alzheimer's disease-like neuropathological stage, and they showed a lack of reaction toward novel environmental conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Creatine deficiency syndromes, due to deficiencies in AGAT, GAMT (creatine synthesis pathway) or SLC6A8 (creatine transporter), lead to complete absence or very strong decrease of creatine in CNS as measured by magnetic resonance spectroscopy. Brain is the main organ affected in creatine-deficient patients, who show severe neurodevelopmental delay and present neurological symptoms in early infancy. AGAT- and GAMT-deficient patients can be treated by oral creatine supplementation which improves their neurological status, while this treatment is inefficient on SLC6A8-deficient patients. While it has long been thought that most, if not all, of brain creatine was of peripheral origin, the past years have brought evidence that creatine can cross blood-brain barrier, however, only with poor efficiency, and that CNS must ensure parts of its creatine needs by its own endogenous synthesis. Moreover, we showed very recently that in many brain structures, including cortex and basal ganglia, AGAT and GAMT, while found in every brain cell types, are not co-expressed but are rather expressed in a dissociated way. This suggests that to allow creatine synthesis in these structures, guanidinoacetate must be transported from AGAT- to GAMT-expressing cells, most probably through SLC6A8. This new understanding of creatine metabolism and transport in CNS will not only allow a better comprehension of brain consequences of creatine deficiency syndromes, but will also contribute to better decipher creatine roles in CNS, not only in energy as ATP regeneration and buffering, but also in its recently suggested functions as neurotransmitter or osmolyte.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Previous studies have postulated that poststroke depression (PSD) might be related to cumulative vascular brain pathology rather than to the location and severity of a single macroinfarct. We performed a detailed analysis of all types of microvascular lesions and lacunes in 41 prospectively documented and consecutively autopsied stroke cases. METHODS: Only cases with first-onset depression <2 years after stroke were considered as PSD in the present series. Diagnosis of depression was established prospectively using DSM-IV criteria for major depression. Neuropathological evaluation included bilateral semiquantitative assessment of microvascular ischemic pathology and lacunes; statistical analysis included Fisher exact test, Mann-Whitney U test, and regression models. RESULTS: Macroinfarct site was not related to the occurrence of PSD for any of the locations studied. Thalamic and basal ganglia lacunes occurred significantly more often in PSD cases. Higher lacune scores in basal ganglia, thalamus, and deep white matter were associated with an increased PSD risk. In contrast, microinfarct and diffuse or periventricular demyelination scores were not increased in PSD. The combined lacune score (thalamic plus basal ganglia plus deep white matter) explained 25% of the variability of PSD occurrence. CONCLUSIONS: The cumulative vascular burden resulting from chronic accumulation of lacunar infarcts within the thalamus, basal ganglia, and deep white matter may be more important than single infarcts in the prediction of PSD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A pressing need exists to disentangle age-related changes from pathologic neurodegeneration. This study aims to characterize the spatial pattern and age-related differences of biologically relevant measures in vivo over the course of normal aging. Quantitative multiparameter maps that provide neuroimaging biomarkers for myelination and iron levels, parameters sensitive to aging, were acquired from 138 healthy volunteers (age range: 19-75 years). Whole-brain voxel-wise analysis revealed a global pattern of age-related degeneration. Significant demyelination occurred principally in the white matter. The observed age-related differences in myelination were anatomically specific. In line with invasive histologic reports, higher age-related differences were seen in the genu of the corpus callosum than the splenium. Iron levels were significantly increased in the basal ganglia, red nucleus, and extensive cortical regions but decreased along the superior occipitofrontal fascicle and optic radiation. This whole-brain pattern of age-associated microstructural differences in the asymptomatic population provides insight into the neurobiology of aging. The results help build a quantitative baseline from which to examine and draw a dividing line between healthy aging and pathologic neurodegeneration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: To investigate potential abnormalities in subcortical brain structures in conversion disorder (CD) compared with controls using a region of interest (ROI) approach. METHODS: Fourteen patients with motor CD were compared with 31 healthy controls using high-resolution MRI scans with an ROI approach focusing on the basal ganglia, thalamus and amygdala. Brain volumes were measured using Freesurfer, a validated segmentation algorithm. RESULTS: Significantly smaller left thalamic volumes were found in patients compared with controls when corrected for intracranial volume. These reductions did not vary with handedness, laterality, duration or severity of symptoms. CONCLUSIONS: These differences may reflect a primary disease process in this area or be secondary effects of the disorder, for example, resulting from limb disuse. Larger, longitudinal structural imaging studies will be required to confirm the findings and explore whether they are primary or secondary to CD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inherited metabolic disorders are the cause of a small but significant number of sudden unexpected deaths in infancy. We report a girl who suddenly died at 11 months of age, during an intercurrent illness. Autopsy showed spongiform lesions in the subcortical white matter, in the basal ganglia, and in the dentate nuclei. Investigations in an older sister with developmental delay, ataxia, and tremor revealed L-2-hydroxyglutaric aciduria and subcortical white matter changes with hyperintensity of the basal ganglia and dentate nuclei at brain magnetic resonance imaging. Both children were homozygous for a splice site mutation in the L2HGDH gene. Sudden death has not been reported in association with L-2-hydroxyglutaric aciduria so far, but since this inborn error of metabolism is potentially treatable, early diagnosis may be important.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plasma levels of clozapine and olanzapine are lower in smokers than in nonsmokers, which is mainly due to induction of cytochrome P4501A2 (CYP1A2) by some smoke constituents. Smoking cessation in patients treated with antipsychotic drugs that are CYP1A2 substrates may result in increased plasma levels of the drug and, consequently, in adverse drug effects. Two cases of patients who smoked tobacco and cannabis are reported. The first patient, who was receiving clozapine treatment, developed confusion after tobacco and cannabis smoking cessation, which was related to increased clozapine plasma levels. The second patient, who was receiving olanzapine treatment, showed important extrapyramidal motor symptoms after reducing his tobacco consumption. The clinical implication of these observations is that smoking patients treated with CYP1A2 substrate antipsychotics should regularly be monitored with regard to their smoking consumption in order to adjust doses in cases of a reduction or increase in smoking.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The prognostic significance of magnetic resonance imaging (MRI) in the neonatal period was studied prospectively in 43 term infants with perinatal asphyxia. MRI was performed between 1 and 14 days after birth with a high field system (2.35 Tesla). Neurodevelopmental outcome was assessed by a standardized neurological examination and the Griffiths developmental test at a mean age of 18.9 months. The predictive value of the various MRI patterns was as follows: Severe diffuse brain injury (pattern AII+III; n = 7) and lesions of thalamus and basal ganglia (pattern C; n = 5) were strongly associated with poor outcome and greatly reduced head growth. Mild diffuse brain injury (pattern AI; n = 7), parasagittal lesions (B; n = 7), periventricular hyperintensity (D; n = 2), focal brain necrosis and hemorrhage (E; n = 3) and periventricular hypointense stripes (on T2-weighted images; F; n = 3) led in one third of the infants to minor neurological disturbances and mild developmental delay. Infants with normal MRI findings (G; n = 9) developed normally with the exception of one infant who was mildly delayed at 18 months. The results indicate that MRI examination during the first two weeks of life is of prognostic significance in term infants suffering from perinatal asphyxia. Severe hypoxic-ischemic brain lesions were associated highly significantly with poor neuro-developmental outcome, whereas infants with inconspicuous MRI developed normally.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: To illustrate the evolution of brain perfusion-weighted magnetic resonance imaging (PWI-MRI) in severe neonatal hypoxic-ischemic (HI) encephalopathy, and its possible relation to further neurodevelopmental outcome. MATERIALS AND METHODS: Two term neonates with HI encephalopathy underwent an early and a late MRI, including PWI. They were followed until eight months of age. A total of three "normal controls" were also included. Perfusion maps were obtained, and relative cerebral blood flow (rCBF) and cerebral blood volume (rCBV) values were measured. RESULTS: Compared to normal neonates, a hyperperfusion (increased rCBF and rCBV) was present on early scans in the whole brain. On late scans, hyperperfusion persisted in cortical gray matter (normalization of rCBF and rCBV ratios in white matter and basal ganglia, but not in cortical gray matter). Diffusion-weighted imaging (DWI) was normalized, and extensive lesions became visible on T2-weighted images. Both patients displayed very abnormal outcome: Patient 2 with the more abnormal early and late hyperperfusion being the worst. CONCLUSION: PWI in HI encephalopathy did not have the same temporal evolution as DWI, and remained abnormal for more than one week after injury. This could be a marker of an ongoing mechanism underlying severe neonatal HI encephalopathy. Evolution of PWI might help to predict further neurodevelopmental outcome.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Neurodegeneration with brain iron accumulation (NBIA) refers to genetically heterogenous paediatric neurodegenerative disorders characterised by basal ganglia iron deposition. One major cause is recessive mutations in the PLA2G6 gene. While strabismus and optic nerve pallor have been reported for PLA2G6-related disease, the ophthalmic phenotype is not carefully defined. In this study we characterise the ophthalmic phenotype of PLA2G6-related NBIA. METHODS: Prospective cohort study. RESULTS: The eight patients were 4-26 years old when examined. All had progressive cognitive and motor regression first noted between 9 months and 6 years of age that typically first manifested as difficulty walking (ataxia). Ophthalmic examination was sometimes limited by cognitive ability. Four of eight had exotropia, 7/7 bilateral supraduction defect, 5/7 poor convergence, 6/8 saccadic pursuit, 4/8 saccadic intrusions that resembled square-wave jerks, and 8/8 bilateral optic nerve head pallor. All patients lacked Bell phenomenon. CONCLUSIONS: Upgaze palsy, although not a previously reported finding, was confirmed in all patients (except in one for whom assessment could not be performed) and thus can be considered part of the phenotype in children and young adults. Other frequent findings not previously highlighted were abnormal convergence, saccadic pursuit, and saccadic intrusions. Optic nerve head pallor and strabismus, previously reported findings in the disease, were found in 100% and 50% of our cohort, respectively, and the strabismus in our series was always exotropia. Taken together, these clinical findings may be helpful in distinguishing PLA2G6-related neurodegeneration from the other major cause of NBIA, recessive PANK2 mutations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

QUESTION UNDER STUDY: The frequency of severe adverse drug reactions (ADRs) from psychotropic drugs was investigated in hospitalised psychiatric patients in relation to their age. Specifically, the incidence of ADRs in patients up to 60 years was compared to that of patients older than 60 years. METHODS: Prescription rates of psychotropic drugs and reports of severe ADRs were collected in psychiatric hospitals in Switzerland between 2001 and 2010. The data stem from the drug surveillance programme AMSP. RESULTS: A total of 699 patients exhibited severe ADRs: 517 out of 28,282 patients up to 60 years (1.8%); 182 out of 11,446 elderly patients (1.6%, ns). Logistic regression analyses showed a significantly negative relationship between the incidence of ADRs and patients' age in general and in particular for weight gain, extrapyramidal motor system (EPMS) symptoms, increased liver enzymes and galactorrhoea. A significantly negative relationship was observed for age and the dosages of olanzapine, quetiapine, risperidone, valproic acid and lamotrigine. When comparing age groups, frequency of ADRs was lower in general for antipsychotic drugs and anticonvulsants, in particular for valproic acid in the elderly. Weight gain was found to be lower in the elderly for antipsychotic drugs, in particular for olanzapine. For the group of mood-stabilising anticonvulsants (carbamazepine, lamotrigine and valproic acid) the elderly exhibited a lower incidence of reported allergic skin reactions. CONCLUSION: The results suggest that for psychiatric inpatients the incidence of common severe ADRs (e.g., weight gain or EPMS symptoms) arising from psychotropic medication decreases with the age of patients.