805 resultados para Bürste, Scherung, Polymer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes a method for determining the polydispersity index Ip2=Mz/Mw of the molecular weight distribution (MWD) of linear polymeric materials from linear viscoelastic data. The method uses the Mellin transform of the relaxation modulus of a simple molecular rheological model. One of the main features of this technique is that it enables interesting MWD information to be obtained directly from dynamic shear experiments. It is not necessary to achieve the relaxation spectrum, so the ill-posed problem is avoided. Furthermore, a determinate shape of the continuous MWD does not have to be assumed in order to obtain the polydispersity index. The technique has been developed to deal with entangled linear polymers, whatever the form of the MWD is. The rheological information required to obtain the polydispersity index is the storage G′(ω) and loss G″(ω) moduli, extending from the terminal zone to the plateau region. The method provides a good agreement between the proposed theoretical approach and the experimental polydispersity indices of several linear polymers for a wide range of average molecular weights and polydispersity indices. It is also applicable to binary blends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Casparian strips are ring-like cell-wall modifications in the root endodermis of vascular plants. Their presence generates a paracellular barrier, analogous to animal tight junctions, that is thought to be crucial for selective nutrient uptake, exclusion of pathogens, and many other processes. Despite their importance, the chemical nature of Casparian strips has remained a matter of debate, confounding further molecular analysis. Suberin, lignin, lignin-like polymers, or both, have been claimed to make up Casparian strips. Here we show that, in Arabidopsis, suberin is produced much too late to take part in Casparian strip formation. In addition, we have generated plants devoid of any detectable suberin, which still establish functional Casparian strips. In contrast, manipulating lignin biosynthesis abrogates Casparian strip formation. Finally, monolignol feeding and lignin-specific chemical analysis indicates the presence of archetypal lignin in Casparian strips. Our findings establish the chemical nature of the primary root-diffusion barrier in Arabidopsis and enable a mechanistic dissection of the formation of Casparian strips, which are an independent way of generating tight junctions in eukaryotes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seal coat and chip seal treatments are commonly used as an economical treatment to provide a new surface to an old asphalt roadway. To be successful, the aggregate or chips must be held in place on the roadway by the asphalt binder over a long period of time. It is common, over time, that the binder becomes aged and brittle and loses its ability to be flexible and hold the aggregate in place. Modifiers have been introduced to extend the life and adhesion characteristics of asphaltic binders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomaterials releasing silver (Ag) are of interest because of their ability to inhibit pathogenic bacteria including antibiotic-resistant strains. In order to investigate the potential of nanometre-thick Ag polymer (Ag/amino-hydrocarbon) nanocomposite plasma coatings, we studied a comprehensive range of factors such as the plasma deposition process and Ag cation release as well as the antibacterial and cytocompatible properties. The nanocomposite coatings released most bound Ag within the first day of immersion in water yielding an antibacterial burst. The release kinetics correlated with the inhibitory effects on the pathogens Pseudomonas aeruginosa or Staphylococcus aureus and on animal cells that were in contact with these coatings. We identified a unique range of Ag content that provided an effective antibacterial peak release, followed by cytocompatible conditions soon thereafter. The control of the in situ growth conditions for Ag nanoparticles in the polymer matrix offers the possibility to produce customized coatings that initially release sufficient quantities of Ag ions to produce a strong adjacent antibacterial effect, and at the same time exhibit a rapidly decaying Ag content to provide surface cytocompatibility within hours/days. This approach seems to be favourable with respect to implant surfaces and possible Ag-resistance/tolerance built-up.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Comment on the Letter by A. Knoll, D. Wiesmann, B. Gotsmann, and U. Duerig, published in Physical Review Letter, 2009, vol. 102, p.117801

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By means of computer simulations and solution of the equations of the mode coupling theory (MCT),we investigate the role of the intramolecular barriers on several dynamic aspects of nonentangled polymers. The investigated dynamic range extends from the caging regime characteristic of glass-formers to the relaxation of the chain Rouse modes. We review our recent work on this question,provide new results, and critically discuss the limitations of the theory. Solutions of the MCT for the structural relaxation reproduce qualitative trends of simulations for weak and moderate barriers. However, a progressive discrepancy is revealed as the limit of stiff chains is approached. This dis-agreement does not seem related with dynamic heterogeneities, which indeed are not enhanced by increasing barrier strength. It is not connected either with the breakdown of the convolution approximation for three-point static correlations, which retains its validity for stiff chains. These findings suggest the need of an improvement of the MCT equations for polymer melts. Concerning the relaxation of the chain degrees of freedom, MCT provides a microscopic basis for time scales from chain reorientation down to the caging regime. It rationalizes, from first principles, the observed deviations from the Rouse model on increasing the barrier strength. These include anomalous scaling of relaxation times, long-time plateaux, and nonmonotonous wavelength dependence of the mode correlators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Biodegradable polymers for release of antiproliferative drugs from metallic drug-eluting stents aim to improve long-term vascular healing and efficacy. We designed a large scale clinical trial to compare a novel thin strut, cobalt-chromium drug-eluting stent with silicon carbide-coating releasing sirolimus from a biodegradable polymer (O-SES, Orsiro; Biotronik, Bülach, Switzerland) with the durable polymer-based Xience Prime/Xpedition everolimus-eluting stent (EES) (Xience Prime/Xpedition stent, Abbott Vascular, IL) in an all-comers patient population. DESIGN: The multicenter BIOSCIENCE trial (NCT01443104) randomly assigned 2,119 patients to treatment with biodegradable polymer sirolimus-eluting stents (SES) or durable polymer EES at 9 sites in Switzerland. Patients with chronic stable coronary artery disease or acute coronary syndromes, including non-ST-elevation and ST-elevation myocardial infarction, were eligible for the trial if they had at least 1 lesion with a diameter stenosis >50% appropriate for coronary stent implantation. The primary end point target lesion failure (TLF) is a composite of cardiac death, target vessel myocardial infarction, and clinically driven target lesion revascularization within 12 months. Assuming a TLF rate of 8% at 12 months in both treatment arms and accepting 3.5% as a margin for noninferiority, inclusion of 2,060 patients would provide more than 80% power to detect noninferiority of the biodegradable polymer SES compared with the durable polymer EES at a 1-sided type I error of 0.05. Clinical follow-up will be continued through 5 years. CONCLUSION: The BIOSCIENCE trial will determine whether the biodegradable polymer SES is noninferior to the durable polymer EES with respect to TLF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We simulate freely jointed chains to investigate how knotting affects the overall shapes of freely fluctuating circular polymeric chains. To characterize the shapes of knotted polygons, we construct enveloping ellipsoids that minimize volume while containing the entire polygon. The lengths of the three principal axes of the enveloping ellipsoids are used to define universal size and shape descriptors analogous to the squared radius of gyration and the inertial asphericity and prolateness. We observe that polymeric chains forming more complex knots are more spherical and also more prolate than chains forming less complex knots with the same number of edges. We compare the shape measures, determined by the enveloping ellipsoids, with those based on constructing inertial ellipsoids and explain the differences between these two measures of polymer shape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Työn tavoitteena oli tutkia Raman-spektrometrin soveltuvuutta muovipäällystettyjen kartonkien syvyyssuuntaisiin mittauksiin. Lisäksi pyrittiin selvittämään voidaanko kiteisyyttä nähdä Raman-laitteistolla. Työn kirjallisessa osassa on selvitetty Raman-laitteiston teknisiä ominaisuuksia. Kokeellinen osa suoritettiin Lappeenrannan teknillisessä yliopistossa Membraanitekniikan ja teknillisen polymeerikemian laboratoriossa. Työssä käytettiin Horiban Jobin Yvon¿in valmistamaa konfokaalista Raman-spektrometri-laitteistoa (LabRam). Syvyyssuuntaisissa mittauksissa käytettiin apuna motorisoitua x-, y- ja z-suuntaan liikkuvaa tasoa. Mittaukset suoritettiin pistemäisesti tietyllä askelvälillä fokusoimalla näytteen pinnasta sisällepäin. Syvyysprofilointimittaukset aloitettiinmäärittelemällä laitteiston syvyysresoluutio eri konfokaalireikäkoolla. Lisäksityössä tehtiin syvyysprofilointimittauksia sekä läpinäkyvillä monikerrosmuoveilla että muovipäällystetyillä kartongeilla. Työssä mitatut muovipäällysteet sisälsivät pääasiassa polyeteeniä. Tulokset osoittivat, että Raman laitteistolla voidaan havainnoida Raman-aktiiviset ryhmät näytteen eri kerroksista. Lisäksi polyeteenin kiteisyysaste voidaan havaita tietyillä aallonpituuksilla.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By means of computer simulations and solution of the equations of the mode coupling theory (MCT),we investigate the role of the intramolecular barriers on several dynamic aspects of nonentangled polymers. The investigated dynamic range extends from the caging regime characteristic of glass-formers to the relaxation of the chain Rouse modes. We review our recent work on this question,provide new results, and critically discuss the limitations of the theory. Solutions of the MCT for the structural relaxation reproduce qualitative trends of simulations for weak and moderate barriers. However, a progressive discrepancy is revealed as the limit of stiff chains is approached. This dis-agreement does not seem related with dynamic heterogeneities, which indeed are not enhanced by increasing barrier strength. It is not connected either with the breakdown of the convolution approximation for three-point static correlations, which retains its validity for stiff chains. These findings suggest the need of an improvement of the MCT equations for polymer melts. Concerning the relaxation of the chain degrees of freedom, MCT provides a microscopic basis for time scales from chain reorientation down to the caging regime. It rationalizes, from first principles, the observed deviations from the Rouse model on increasing the barrier strength. These include anomalous scaling of relaxation times, long-time plateaux, and nonmonotonous wavelength dependence of the mode correlators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present molecular dynamics simulations of a simple model for polymer melts with intramolecular barriers. We investigate structural relaxation as a function of the barrier strength. Dynamic correlators can be consistently analyzed within the framework of the mode coupling theory of the glass transition. Control parameters are tuned in order to induce a competition between general packing effects and polymer-specific intramolecular barriers as mechanisms for dynamic arrest. This competition yields unusually large values of the so-called mode coupling theory exponent parameter and rationalizes qualitatively different observations for simple bead-spring and realistic polymers. The systematic study of the effect of intramolecular barriers presented here also establishes a fundamental difference between the nature of the glass transition in polymers and in simple glass formers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we investigate the formation of superficial micro- and nanostructures in poly(ethylene-2,6-naphthalate) (PEN), with a view to their use in biomedical device applications, and compare its performance with a polymer commonly used for the fabrication of these devices, poly(methyl methacrylate) (PMMA). The PEN is found to replicate both micro- and nanostructures in its surface, albeit requiring more forceful replication conditions than PMMA, producing a slight increase in surface hydrophilicity. This ability to form micro/nanostructures, allied to biocompatibility and good optical transparency, suggests that PEN could be a useful material for production of, or for incorporation into, transparent devices for biomedical applications. Such devices will be able to be autoclaved, due to the polymer's high temperature stability, and will be useful for applications where forceful experimental conditions are required, due to a superior chemical resistance over PMMA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ ethylene polymerizations were performed using bis(cyclopentadiene)titanium dichloride supported on polyethersulfone as catalyst. The bis(cyclopentadiene)titanium dichloride supported on polyethersulfone catalyst activity estimated by ethylene polymerization was 360 kgPE/molTi/h. During polymerization the fillers used were montmorillionite nanoclays having surface modifications with 35-45 wt% dimethyl dialkyl(14-18)amine (FA) and 25-30 wt% trimethyl stearyl ammonium (FB). These fillers were pretreated with methylaluminoxine (MAO; cocatalyst) for better dispersion onto the polymer matrix. The formation of polyethylene within the whole matrix was confirmed by FTIR studies. It was found that the nature of nanofiller did not have any remarkable effect on the melting characteristics of the polymer. TGA study indicates that nanoclay FB filled polyethylene has higher thermal stability than nanoclay FA filled polyethylene. The melting temperature of the obtained polyethylenes was 142 ºC, which corresponds to that synthesized by the polyether sulfone supported catalyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymeric materials have been used in dental applications for decades. Adhesion of polymeric materials to each other and to the tooth substrate is essential to their successful use. The aim of this series of studies was two-folded. First, to improve adhesion of poly(paraphenylene) based rigid rod polymer (RRP) to other dental polymers, and secondly, to evaluate the usability of a new dentin primer system based on RRP fillers. Poly(paraphenylene) based RRP would be a tempting material for dental applications because of its good mechanical properties. To be used in dental applications, reliable adhesion between RRP and other dental polymers is required. In this series of studies, the adhesion of RRP to denture base polymer and the mechanical properties of RRP-denture base polymer-material combination were evaluated. Also adhesion of BisGMA-TEGDMA-resin to RRP was determined. Different surface treatments were tested to improve the adhesion of BisGMA-TEGDMA-resin to RRP. Results were based on three-point bending testing, Vickers surface hardness test and scanning electron microscope analysis (SEM), which showed that no reliable adhesion between RRP and denture base polymer was formed. Addition of RRP filler to denture base polymer increased surface hardness and flexural modulus but flexural strength decreased. Results from the shear bond strength test and SEM revealed that adhesion between resin and RRP was possible to improve by surface treatment with dichloromethane (DCM) based primer and a new kind of adhesive surface can be designed. The current dentin bonding agents have good immediate bond strength, but in long term the bond strength may decrease due to the detrimental effect of water and perhaps by matrix metalloproteinases. This leads to problems in longevity of restorations. Current bonding agents use organic monomers. In this series of studies, RRP filled dentin primer was tested in order to decrease the water sorption of the monomer system of the primers. The properties of new dentin primer system were evaluated in vitro by comparing it to commercial etch and rinse adhesive system. The results from the contact angle measurements and SEM showed that experimental primer with RRP reinforcement provided similar resin infiltration to dentin collagen and formed the resin-dentin interface as the control primer. Microtensile bond strength test and SEM revealed that in short term water storing, RRP increased bond strength and primer with BMEP-monomer (bis[2-(methacryloyloxy)-ethyl]phosphate) and high solvent concentration provided comparable bonding properties to the commercial control primers. In long term water storing, the high solvent-monomer concentration of the experimental primers decreased bond strength. However, in low solvent-monomer concentration groups, the long-term water storing did not decrease the bond strength despite the existence of hydrophilic monomers which were used in the system. These studies demonstrated that new dentin primer system reached the mechanical properties of current traditional etch and rinse adhesive system in short time water storing. Improved properties can be achieved by further modifications of the monomer system. Studies of the adhesion of RRP to other polymers suggest that adhesion between RRP and other dental polymers is possible to obtain by certain surface treatments.