926 resultados para Axial Movement
Resumo:
This paper focuses on the use of externally bonded Carbon Fiber Reinforced Polymer (CFRP) materials to strengthen steel plates subjected to compression. A fully slender steel section was selected in this test programme. CFRP strengthened steel plates and non strengthened plates were tested to fail under compressive load. The middle part of the strut was strengthened using CFRP sheet. The length of the strengthened zone was varied. Eight specimens were tested in this test programme. The test results showed a significant strength gain of 47% and delaying of lateral torsional buckling failure mode of strengthened members. This study confirms that there is great potential to increase the short term performance of CFRP strengthened steel structure under axial compression.
Resumo:
This article summarizes research from an ecological dynamics program of work on team sports exemplifying how small-sided and conditioned games (SSCG) can enhance skill acquisition and decision-making processes during training. The data highlighted show how constraints of different SSCG can facilitate emergence of continuous interpersonal coordination tendencies during practice to benefit team game players.
Resumo:
Purpose: To investigate the changes occurring in the axial length, choroidal thickness and anterior biometrics of the eye during a 10 minute near task performed in downward gaze. Methods: Twenty young adult subjects (10 emmetropes and 10 myopes) participated in this study. To measure ocular biometrics in downward gaze, an optical biometer was inclined on a custom built, height and tilt adjustable table. Baseline measures were collected after each subject performed a distance primary gaze control task for 10 mins, to provide wash-out period for prior visual tasks before each of three different accommodation/gaze conditions. These other three conditions included a near task (2.5 D) in primary gaze, and a near (2.5 D) and a far (0 D) accommodative task in downward gaze (25°), all for 10 mins duration. Immediately after, and then 5 and 10 mins from the commencement of each trial, measurements of ocular biometrics (e.g. anterior biometrics, axial length, choroidal thickness and retinal thickness) were obtained. Results: Axial length increased with accommodation and was significantly greater for downward gaze with accommodation (mean change ± SD 23 ± 13 µm at 10 mins) compared to primary gaze with accommodation (mean change 8 ± 15 µm at 10 mins) (p < 0.05). A small amount of choroidal thinning was also found during accommodation that was statistically significant in downward gaze (13 ± 14 µm at 10 mins, p < 0.05). Accommodation in downward gaze also caused greater changes in anterior chamber depth and lens thickness compared to accommodation in primary gaze. Conclusion: Axial length, choroidal thickness and anterior eye biometrics change significantly during accommodation in downward gaze as a function of time. These changes appear to be due to the combined influence of biomechanical factors (i.e. extraocular muscle forces, ciliary muscle contraction) associated with near tasks in downward gaze.
Resumo:
Using Media-Access-Control (MAC) address for data collection and tracking is a capable and cost effective approach as the traditional ways such as surveys and video surveillance have numerous drawbacks and limitations. Positioning cell-phones by Global System for Mobile communication was considered an attack on people's privacy. MAC addresses just keep a unique log of a WiFi or Bluetooth enabled device for connecting to another device that has not potential privacy infringements. This paper presents the use of MAC address data collection approach for analysis of spatio-temporal dynamics of human in terms of shared space utilization. This paper firstly discuses the critical challenges and key benefits of MAC address data as a tracking technology for monitoring human movement. Here, proximity-based MAC address tracking is postulated as an effective methodology for analysing the complex spatio-temporal dynamics of human movements at shared zones such as lounge and office areas. A case study of university staff lounge area is described in detail and results indicates a significant added value of the methodology for human movement tracking. By analysis of MAC address data in the study area, clear statistics such as staff’s utilisation frequency, utilisation peak periods, and staff time spent is obtained. The analyses also reveal staff’s socialising profiles in terms of group and solo gathering. The paper is concluded with a discussion on why MAC address tracking offers significant advantages for tracking human behaviour in terms of shared space utilisation with respect to other and more prominent technologies, and outlines some of its remaining deficiencies.
Resumo:
Social media have become crucial tools for political activists and protest movements, providing another channel for promoting messages and garnering support. Twitter, in particular, has been identified as a noteworthy medium for protests in countries including Iran and Egypt to receive global attention. The Occupy movement, originating with protests in, and the physical occupation of, Wall Street, and inspiring similar demonstrations in other U.S. cities and around the world, has been intrinsically linked with social media through location-specific hashtags: #ows for Occupy Wall Street, #occupysf for San Francisco, and so on. While the individual protests have a specific geographical focus-highlighted by the physical occupation of parks, buildings, and other urban areas-Twitter provides a means for these different movements to be linked and promoted through tweets containing multiple hashtags. It also serves as a channel for tactical communications during actions and as a space in which movement debates take place. This paper examines Twitter's use within the Occupy Oakland movement. We use a mixture of ethnographic research through interviews with activists and participant observation of the movements' activities, and a dataset of public tweets containing the #oo hashtag from early 2012. This research methodology allows us to develop a more accurate and nuanced understanding of how movement activists use Twitter by cross-checking trends in the online data with observations and activists' own reported use of Twitter. We also study the connections between a geographically focused movement such as Occupy Oakland and related, but physically distant, protests taking place concurrently in other cities. This study forms part of a wider research project, Mapping Movements, exploring the politics of place, investigating how social movements are composed and sustained, and the uses of online communication within these movements.
Resumo:
Vibration characteristics of columns are influenced by their axial loads. Numerous methods have been developed to quantify axial load and deformation in individual columns based on their natural frequencies. However, these methods cannot be applied to columns in a structural framing system as the natural frequency is a global parameter of the entire framing system. This paper presents an innovative method to quantify axial deformations of columns in a structural framing system using its vibration characteristics, incorporating the influence of load tributary areas, boundary conditions and load migration among the columns.
Resumo:
The use of dual growing rods is a fusionless surgical approach to the treatment of early onset scoliosis (EOS) which aims to harness potential growth in order to correct spinal deformity. This study compared through in-vitro experiments the biomechanical response of two different rod designs under axial rotation loading. The study showed that a new design of telescoping growing rod preserved the rotational flexibility of the spine in comparison with rigid rods indicating them to be a more physiological way to improve the spinal deformity.
Resumo:
Opposition to men’s violence against women who are their intimate partners has become politically popular in the United States. The Violence Against Women Act (VAWA) has enjoyed broad-based support for over 15 years. VAWA has been refined and expanded with each reauthorization. Resistance to the battered women’s movement is often overlooked in this political context. However, woman abuse and state responses to it are mired in cultural tensions about crime, law, gender, economics, scholarship, and the family. Based on interviews with 35 advocates in the United States, this paper outlines key tactics of antifeminist backlash against the battered women’s movement.
Resumo:
Study Design Cross-sectional study. Objective To explore aspects of cervical musculoskeletal function in female office workers with neck pain. Summary of Background Data Evidence of physical characteristics that differentiate computer workers with and without neck pain is sparse. Patients with chronic neck pain demonstrate reduced motion and altered patterns of muscle control in the cervical flexor and upper trapezius (UT) muscles during specific tasks. Understanding cervical musculoskeletal function in office workers will better direct intervention and prevention strategies. Methods Measures included neck range of motion; superficial neck flexor muscle activity during a clinical test, the craniocerivcal flexion test; and a motor task, a unilateral muscle coordination task, to assess the activity of both the anterior and posterior neck muscles. Office workers with and without neck pain were formed into 3 groups based on their scores on the Neck Disability Index. Nonworking women without neck pain formed the control group. Surface electromyographic activity was recorded bilaterally from the sternocleidomastoid, anterior scalene (AS), cervical extensor (CE) and UT muscles. Results Workers with neck pain had reduced rotation range and increased activity of the superficial cervical flexors during the craniocervical flexion test. During the coordination task, workers with pain demonstrated greater activity in the CE muscles bilaterally. On completion of the task, the UT and dominant CE and AS muscles demonstrated an inability to relax in workers with pain. In general, there was a linear relationship between the workers’ self-reported levels of pain and disability and the movement and muscle changes. Conclusion These results are consistent with those found in other cervical musculoskeletal disorders and may represent an altered muscle recruitment strategy to stabilize the head and neck. An exercise program including motor reeducation may assist in the management of neck pain in office workers.
Resumo:
Purpose: To investigate the changes in axial length with the combined effect of accommodation and angle of gaze (convergence and downward gaze) over 5 minutes in groups of myopes and emmetropes. Methods: A total of 31 subjects (nine emmetropes, 10 low myopes, and 12 moderate to high myopes) aged from 18 to 31 years were recruited. To measure ocular biometrics in inferonasal gaze with accommodation, an optical biometer (Lenstar LS900) was inclined on a tilt and height adjustable stage, with the subject’s chinrest mounted on a rotary stage to induce various levels of convergence by rotation of the subject’s head in primary or downward gaze. Initially, the subjects performed a distance viewing task in primary gaze for 10 minutes to provide a ‘wash-out’ period for prior visual tasks, and then the subject’s axial length and ocular biometrics were measured in nine different combinations of gaze/accommodation over 5 minutes. These nine sessions for all gaze measurements (i.e. three levels of accommodation 9 three levels of convergence) were completed across 3 days of testing (one accommodation condition on each day).The nine combinations of gaze/accommodation were based on those required to view the centre, right and left edges of a distant TV at 6 m in primary gaze, an intermediate task (i.e. computer at 50 cm in 10° downward gaze) and a near task (i.e. reading A4 page at 20 cm in 20° downward gaze). Subjects were wearing a custom built three-axes head tracker throughout the experiment that monitored subjects’ relative head movements (roll, pitch and yaw) during measurements. Results: A significant increase in axial length occurred with the combined effect of accommodation, convergence and downward gaze (repeated measures ANOVA, p < 0.001), with the greatest axial elongation during the near task in downward gaze with convergence (i.e. downward 20°/inward 33°, with 5 D accommodation) (mean change 33 ± 13 lm, after 5 minutes task) followed by the intermediate task (i.e. downward 10°/inward 25°, with 2 D accommodation) (mean change 14 ± 11 lm, after 5 minutes task).Changes in axial length for the distance task (i.e. primary gaze/9° convergence, with 0.16 D accommodation) were not statistically significant (mean change 4 ± 8 lm, after 5 minutes task, p > 0.05). Moderate to high myopes had a greater change in the axial length (mean change 40 ± 11 lm after 5 minutes of near task) than that of emmetropes (mean change 29 ± 15 lm after 5 minutes of near task) and low myopes (mean change 29 ± 16 lm after 5 minutes of near task) associated with time (p = 0.02) and accommodation by time (p = 0.03). Conclusions: The combination of accommodation, convergence and downward angle has a significant short term effect on axial length over time. The near task in downward gaze with convergence caused a greater change in axial length than the intermediate and distant visual tasks. The greater axial elongation measured in the infero-nasal direction with accommodation is most likely associated with a combination of biomechanical factors such as, extraocular muscle forces and ciliary muscle contraction.
Resumo:
Although accelerometers are extensively used for assessing gait, limited research has evaluated the concurrent validity of these devices on less predictable walking surfaces or the comparability of different methods used for gravitational acceleration compensation. This study evaluated the concurrent validity of trunk accelerations derived from a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces and contrasted two methods used to remove gravitational accelerations: i) subtraction of the best linear fit from the data (detrending), and; ii) use of orientation information (quaternions) from the inertial measurement unit. Twelve older and twelve younger adults walked at their preferred speed along firm, compliant and uneven walkways. Accelerations were evaluated for the thoracic spine (T12) using a tri-axial inertial measurement unit and an eleven-camera Vicon system. The findings demonstrated excellent agreement between accelerations derived from the inertial measurement unit and motion analysis system, including while walking on uneven surfaces that better approximate a real-world setting (all differences <0.16 m.s−2). Detrending produced slightly better agreement between the inertial measurement unit and Vicon system on firm surfaces (delta range: −0.05 to 0.06 vs. 0.00 to 0.14 m.s−2), whereas the quaternion method performed better when walking on compliant and uneven walkways (delta range: −0.16 to −0.02 vs. −0.07 to 0.07 m.s−2). The technique used to compensate for gravitational accelerations requires consideration in future research, particularly when walking on compliant and uneven surfaces. These findings demonstrate trunk accelerations can be accurately measured using a wireless inertial measurement unit and are appropriate for research that evaluates healthy populations in complex environments.
Resumo:
This paper presents the modeling and motion-sensorless direct torque and flux control of a novel dual-airgap axial-flux permanent-magnet machine optimized for use in flywheel energy storage system (FESS) applications. Independent closed-loop torque and stator flux regulation are performed in the stator flux ( x-y) reference frame via two PI controllers. This facilitates fast torque dynamics, which is critical as far as energy charging/discharging in the FESS is concerned. As FESS applications demand high-speed operation, a new field-weakening algorithm is proposed in this paper. Flux weakening is achieved autonomously once the y-axis voltage exceeds the available inverter voltage. An inherently speed sensorless stator flux observer immune to stator resistance variations and dc-offset effects is also proposed for accurate flux and speed estimation. The proposed observer eliminates the rotary encoder, which in turn reduces the overall weight and cost of the system while improving its reliability. The effectiveness of the proposed control scheme has been verified by simulations and experiments on a machine prototype.
Resumo:
This paper presents the modeling and position-sensorless vector control of a dual-airgap axial flux permanent magnet (AFPM) machine optimized for use in flywheel energy storage system (FESS) applications. The proposed AFPM machine has two sets of three-phase stator windings but requires only a single power converter to control both the electromagnetic torque and the axial levitation force. The proper controllability of the latter is crucial as it can be utilized to minimize the vertical bearing stress to improve the efficiency of the FESS. The method for controlling both the speed and axial displacement of the machine is discussed. An inherent speed sensorless observer is also proposed for speed estimation. The proposed observer eliminates the rotary encoder, which in turn reduces the overall weight and cost of the system while improving its reliability. The effectiveness of the proposed control scheme has been verified by simulations and experiments on a prototype machine.
Resumo:
Dissociable processes for conscious perception (“what” processing) and guidance of action (“how” processing) have been identified in visual, auditory, and somatosensory systems. The present study was designed to find similar dissociation within whole-body movements in which the presence of vestibular information creates a unique perceptual condition. In two experiments, blindfolded participants walked along a linear path and specified the walked distance by verbally estimating it (“what” measure) and by pulling a length of tape that matched the walked distance (“how” measure). Although these two measures yielded largely comparable responses under a normal walking condition, variability in verbal estimates showed a qualitatively different pattern from that in tape-pulling when sensory input into walking was altered by having participants wear a heavy backpack. This suggests that the “what” versus “how” dissociation exists in whole-body movements as well, supporting a claim that it is a general principle with which perceptual systems are organized.
Resumo:
This thesis was a step forward in extracting valuable features from human's movement behaviour in terms of space utilisation based on Media-Access-Control data. This research offered a low-cost and less computational complexity approach compared to existing human's movement tracking methods. This research was successfully applied in QUT's Gardens Point campus and can be scaled to bigger environments and societies. Extractable information from human's movement by this approach can add a significant value to studying human's movement behaviour, enhancing future urban and interior design, improving crowd safety and evacuation plans.