975 resultados para Average models
Resumo:
The aggregation theory of mathematical programming is used to study decentralization in convex programming models. A two-level organization is considered and a aggregation-disaggregation scheme is applied to such a divisionally organized enterprise. In contrast to the known aggregation techniques, where the decision variables/production planes are aggregated, it is proposed to aggregate resources allocated by the central planning department among the divisions. This approach results in a decomposition procedure, in which the central unit has no optimization problem to solve and should only average local information provided by the divisions.
Resumo:
We write the London limit of the Lawrence Doniach free energy in terms of the local magnetic field and of the average supercurrent over the interplane distance. Starting from this formulation we study a model where the supercurrent at the buffer layers is obtained from the superconducting sheets by a Taylor expansion. The continuum limit of this model gives corrections to the anisotropic London theory due to the layered structure.
Resumo:
The medium term hydropower scheduling (MTHS) problem involves an attempt to determine, for each time stage of the planning period, the amount of generation at each hydro plant which will maximize the expected future benefits throughout the planning period, while respecting plant operational constraints. Besides, it is important to emphasize that this decision-making has been done based mainly on inflow earliness knowledge. To perform the forecast of a determinate basin, it is possible to use some intelligent computational approaches. In this paper one considers the Dynamic Programming (DP) with the inflows given by their average values, thus turning the problem into a deterministic one which the solution can be obtained by deterministic DP (DDP). The performance of the DDP technique in the MTHS problem was assessed by simulation using the ensemble prediction models. Features and sensitivities of these models are discussed. © 2012 IEEE.
Resumo:
This study was conducted to examine the relationship among average annual productivity of the cow (PRODAM), yearling weight (YW), postweaning BW gain (PWG), scrotal circumference (SC), and stayability in the herd for at least 6 yr (STAY) of Nelore and composite beef cattle. Measurements were taken on animals born between 1980 and 2010 on 70 farms located in 7 Brazilian states. Estimates of heritability and genetic and environmental correlations were obtained by Bayesian approach with 5-trait animal models. Genetic trends were estimated by regressing means of estimated breeding values by year of birth. The heritability estimates were between 0.14 and 0.47. Estimates of genetic correlation among female traits (PRODAM and STAY) and growth traits ranged from-0.02 to 0.30. Estimates of genetic correlations ranged from 0.23 to 0.94 among growth traits indicating that selection for these traits could be successful in tropical breeding programs. Genetic correlations among all traits were favorable and simultaneous selection for growth, productivity, and stayability is therefore possible. Genetic correlation between PRODAM and STAY was 0.99 and 0.85 for Nelore and composite cattle, respectively. Therefore, PRODAM and STAY might be influenced by many of the same genes. The inclusion of PRODAM instead of STAY as a selection criterion seems to be more advantageous for tropical breeding programs because the generation interval required to obtain accurate estimates of genetic merit for PRODAM is shorter. Average annual genetic changes were greater in Nelore than in composite cattle. This was not unexpected because the breeding program of composite cattle included a large number of farms, different production environments, and genetic level of the herds and breeds. Thus, the selection process has become more difficult in this population. © 2013 American Society of Animal Science. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Genética e Melhoramento Animal - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We calculate within the framework of relativistic nuclear models the contribution of the ρ0 - ω mixing interaction to the binding energy differences of the mirror nuclei in the neighborhood of A = 16 and A = 40. We use two relativistic models for the nuclear structure, one with scalar and vector Woods-Saxon potentials, and the Walecka model. The ρ0 - ω interaction is treated in first order perturbation theory. When using the Walecka model the ρ- and ω-nucleon coupling constants are the same for calculating bound state wave functions and the perturbation due to the mixing. We find that the relativistic results on the average are of the same order as the ones obtained with nonrelativistic calculations.
Resumo:
We develop spatial statistical models for stream networks that can estimate relationships between a response variable and other covariates, make predictions at unsampled locations, and predict an average or total for a stream or a stream segment. There have been very few attempts to develop valid spatial covariance models that incorporate flow, stream distance, or both. The application of typical spatial autocovariance functions based on Euclidean distance, such as the spherical covariance model, are not valid when using stream distance. In this paper we develop a large class of valid models that incorporate flow and stream distance by using spatial moving averages. These methods integrate a moving average function, or kernel, against a white noise process. By running the moving average function upstream from a location, we develop models that use flow, and by construction they are valid models based on stream distance. We show that with proper weighting, many of the usual spatial models based on Euclidean distance have a counterpart for stream networks. Using sulfate concentrations from an example data set, the Maryland Biological Stream Survey (MBSS), we show that models using flow may be more appropriate than models that only use stream distance. For the MBSS data set, we use restricted maximum likelihood to fit a valid covariance matrix that uses flow and stream distance, and then we use this covariance matrix to estimate fixed effects and make kriging and block kriging predictions.
Resumo:
The objective of this paper is to model variations in test-day milk yields of first lactations of Holstein cows by RR using B-spline functions and Bayesian inference in order to fit adequate and parsimonious models for the estimation of genetic parameters. They used 152,145 test day milk yield records from 7317 first lactations of Holstein cows. The model established in this study was additive, permanent environmental and residual random effects. In addition, contemporary group and linear and quadratic effects of the age of cow at calving were included as fixed effects. Authors modeled the average lactation curve of the population with a fourth-order orthogonal Legendre polynomial. They concluded that a cubic B-spline with seven random regression coefficients for both the additive genetic and permanent environment effects was to be the best according to residual mean square and residual variance estimates. Moreover they urged a lower order model (quadratic B-spline with seven random regression coefficients for both random effects) could be adopted because it yielded practically the same genetic parameter estimates with parsimony. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Adaptive radiation is usually thought to be associated with speciation, but the evolution of intraspecific polymorphisms without speciation is also possible. The radiation of cichlid fish in Lake Victoria (LV) is perhaps the most impressive example of a recent rapid adaptive radiation, with 600+ very young species. Key questions about its origin remain poorly characterized, such as the importance of speciation versus polymorphism, whether species persist on evolutionary time scales, and if speciation happens more commonly in small isolated or in large connected populations. We used 320 individuals from 105 putative species from Lakes Victoria, Edward, Kivu, Albert, Nabugabo and Saka, in a radiation-wide amplified fragment length polymorphism (AFLP) genome scan to address some of these questions. We demonstrate pervasive signatures of speciation supporting the classical model of adaptive radiation associated with speciation. A positive relationship between the age of lakes and the average genomic differentiation of their species, and a significant fraction of molecular variance explained by above-species level taxonomy suggest the persistence of species on evolutionary time scales, with radiation through sequential speciation rather than a single starburst. Finally the large gene diversity retained from colonization to individual species in every radiation suggests large effective population sizes and makes speciation in small geographical isolates unlikely.
Resumo:
There is an emerging interest in modeling spatially correlated survival data in biomedical and epidemiological studies. In this paper, we propose a new class of semiparametric normal transformation models for right censored spatially correlated survival data. This class of models assumes that survival outcomes marginally follow a Cox proportional hazard model with unspecified baseline hazard, and their joint distribution is obtained by transforming survival outcomes to normal random variables, whose joint distribution is assumed to be multivariate normal with a spatial correlation structure. A key feature of the class of semiparametric normal transformation models is that it provides a rich class of spatial survival models where regression coefficients have population average interpretation and the spatial dependence of survival times is conveniently modeled using the transformed variables by flexible normal random fields. We study the relationship of the spatial correlation structure of the transformed normal variables and the dependence measures of the original survival times. Direct nonparametric maximum likelihood estimation in such models is practically prohibited due to the high dimensional intractable integration of the likelihood function and the infinite dimensional nuisance baseline hazard parameter. We hence develop a class of spatial semiparametric estimating equations, which conveniently estimate the population-level regression coefficients and the dependence parameters simultaneously. We study the asymptotic properties of the proposed estimators, and show that they are consistent and asymptotically normal. The proposed method is illustrated with an analysis of data from the East Boston Ashma Study and its performance is evaluated using simulations.