942 resultados para Automobile engineers
Resumo:
There is considerable disagreement in the literature on available oxygen storage capacity, and on the reaction rates associated with the storage process, for three-way automotive catalysts. This paper seeks to address the issue of oxygen storage capacity in a clear and precise manner. The work described involved a detailed investigation of oxygen storage capacity in typical samples of automotive catalysts. The capacity has also been precisely defined and estimates have been made of the specific capacity based on catalyst dimensions. A purpose-built miniature catalyst test rig has been assembled to allow measurement of the capacity and the experimental procedure has been developed to ensure accurate measurement. The measurements from the first series of experiments have been compared with the theoretical calculations and good agreement is seen. A second series of experiments allowed the effect of temperature on oxygen storage capacity to be investigated. This work shows very clearly the large variation of the capacity with temperature.
Resumo:
This paper describes the development of a two-dimensional transient catalyst model. Although designed primarily for two-stroke direct injection engines, the model is also applicable to four-stroke lean burn and diesel applications. The first section describes the geometries, properties and chemical processes simulated by the model and discusses the limitations and assumptions applied. A review of the modeling techniques adopted by other researchers is also included. The mathematical relationships which are used to represent the system are then described, together with the finite volume method used in the computer program. The need for a two-dimensional approach is explained and the methods used to model effects such as flow and temperature distribution are presented. The problems associated with developing surface reaction rates are discussed in detail and compared with published research. Validation and calibration of the model is achieved by comparing predictions with measurements from a flow reactor. While an extensive validation process, involving detailed measurements of gas composition and thermal gradients, has been completed, the analysis is too detailed for publication here and is the subject of a separate technical paper.
Resumo:
This paper describes the detailed validation of a computer model designed to simulate the transient light-off in a two-stroke oxidation catalyst. A plug flow reactor is employed to provide measurements of temperature and gas concentration at various radial and axial locations inside the catalyst. These measurements are recorded at discrete intervals during a transient light-off in which the inlet temperature is increased from ambient to 300oC at rates of up to 6oC/sec. The catalyst formulation used in the flow reactor, and its associated test procedures, are then simulated by the computer and a comparison made between experimental readings and model predictions. The design of the computer model to which this validation exercise relates is described in detail in a separate technical paper. The first section of the paper investigates the warm-up characteristics of the substrate and examines the validity of the heat transfer predictions between the wall and the gas in the absence of chemical reactions. The predictions from a typical single-component CO transient light-off test are discussed in the second section and are compared with experimental data. In particular the effect of the temperature ramp on the light-off curve and reaction zone development is examined. An analysis of the C3H6 conversion is given in the third section while the final section examines the accuracy of the light-off curves which are produced when both CO and C3H6 are present in the feed gas. The analysis shows that the heat and mass transfer calculations provided reliable predictions of the warm-up behaviour and post light-off gas concentration profiles. The self-inhibition and cross-inhibition terms in the global rate expressions were also found to be reasonably reliable although the surface reaction rates required calibration with experimental data.
Resumo:
Traditionally the simulation of the thermodynamic aspects of the internal combustion engine has been undertaken using one-dimensional gas-dynamic models to represent the intake and exhaust systems. CFD analysis of engines has been restricted to modelling of in-cylinder flow structures. With the increasing accessibility of CFD software it is now worth considering its use for complete gas-dynamic engine simulation. This paper appraises the accuracy of various CFD models in comparison to a 1D gas-dynamic simulation. All of the models are compared to experimental data acquired on an apparatus that generates a single gas-dynamic pressure wave. The progress of the wave along a constant area pipe and its subsequent reflection from the open pipe end are recorded with a number of high speed pressure transducers. It was found that there was little to choose between the accuracy of the 1D model and the best CFD model. The CFD model did not require experimentally derived loss coefficients to accurately represent the open pipe end; however, it took several hundred times longer to complete its analysis. The best congruency between the CFD models and the experimental data was achieved using the RNG k-e turbulence model. The open end of the pipe was most effectively represented by surrounding it with a relatively small volume of cells connected to the rest of the environment using a pressure boundary.