1000 resultados para Automated weather station (AWS)
Resumo:
Com este trabalho, o objetivo foi estimar a radiação fotossinteticamente ativa (PAR) e correlacioná-la com a massa de matéria seca (MMSPA) da grama-esmeralda (Zoysia japonica Steud.), em superfícies com diferentes exposições e declividades. A pesquisa foi desenvolvida na Bacia Hidrográfica Experimental do Departamento de Engenharia Rural, FCAV/UNESP, Brasil, onde foram utilizadas as superfícies (H; 10 N; 30 N; 50 N; 10 S; 30 S; 50 S; 10 L; 30 L; 50 L; 10 O; 30 O e 50 O). Para a obtenção da radiação solar global, foi instalada uma estação meteorológica automatizada, onde a PAR (variável dependente) foi obtida por meio da equação y = a + bx, e a radiação global foi a independente. Para comparação de médias da MMSPA, utilizou-se o teste de Tukey, a 5% de probabilidade, e para verificar a relação existente PAR/MMSPA, o coeficiente de correlação linear simples. O resultado mostrou que o acúmulo desses efeitos na PAR aumenta com a exposição norte e decresce com a sul, sendo a exposição 50 N a mais indicada para taludes, não havendo correlação entre a PAR e a MMSPA para as superfícies avaliadas para o período estudado.
Resumo:
The aim of this investigation was to evaluate four reference methods to estimate evapotranspiration (Makkink, Hargreaves, Class A pan and Radiation), compared tb Penman-Monteith method, that is considered standard by the Food and Agricultural Organization of the United Nations (FAO). Errors due to variable measurements in the reference evapotranspiration estimate were taken into consideration. The research was developed in an experimental area of the Department of Rural Engieering of the School of Agricultural and Veterinarian Sciences, Campus of Jaboticabal, São Paulo State University. An automated weather station was used and it was equipped with sensors to measure global and net radiation, temperature, relative humidity, and wind speed. The aftermath showed a better adjustment to Hargreaves. Makkink, Class A pan and Radiation methods are different from Penman-Monteith, therefore, they cannot be compared. To evaluate methods to estimate evapotranspiration and avoid possible evaluation errors, ETo estimate errors must be considered.
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
As medições e estimativas dos componentes do balanço de energia foram feitos acima da copa das árvores no ecossistema de manguezal natural, localizada a 30 km da cidade de Bragança-PA, entre novembro de 2002 e agosto de 2003. Os dados foram utilizados para a análise das variações sazonais e horárias do fluxo de calor sensível e calor latente, bem como a avaliação da partição de energia. Os dados meteorológicos foram coletados pela estação meteorológica automática (EMA) e os fluxos foram calculados utilizando-se a técnica de covariância de vórtices turbulentos. Os modelos de Penman-Monteith e Shuttleworth foram usados para estimar o fluxo de calor sensível e calor latente. O objetivo deste estudo foi analisar o equilíbrio e a partição de energia no manguezal, assim como fazer uma avaliação do comportamento de modelos empíricos para estimar os fluxos de energia. O saldo de radiação apresentou valores mais elevados no período menos chuvoso. A razão de Bowen mostrou valor geralmente baixo, o que indica que uma proporção maior de energia foi utilizada sob a forma de calor latente. O modelo Shuttleworth é mais eficiente na estimativa de fluxos de calor sensível. Para estimar o fluxo de calor latente do modelo de Penman-Monteith foi mais eficiente durante a estação seca e o modelo Shuttleworth durante a estação chuvosa.
Resumo:
The best irrigation management depends on accurate estimation of reference evapotranspiration (ET0) and then selection of the appropriate crop coefficient for each phenological stage. However, the evaluation of water productivity on a large scale can be done by using actual evapotranspiration (ETa), determined by coupling agrometeorological and remote sensing data. This paper describes methodologies used for estimating ETa for 20 centerpivots using three different approaches: the traditional FAO crop coefficient (K-c) method and two remote sensing algorithms, one called SEBAL and other named TEIXEIRA. The methods were applied to one Landsat 5 Thematic Mapper image acquired in July 2010 over the Northwest portion of the Sao Paulo State, Brazil. The corn, bean and sugar cane crops are grown under center pivot sprinkler irrigation. ET0 was calculated by the Penman-Monteith method with data from one automated weather station close to the study site. The results showed that for the crops at effective full cover, SEBAL and TEIXEIRA's methods agreed well comparing with the traditional method. However, both remote sensing methods overestimated ETa according to the degree of exposed soil, with the TEIXEIRA method presenting closer ETa values with those resulted from the traditional FAO K-c method. This study showed that remote sensing algorithms can be useful tools for monitoring and establishing realistic K-c values to further determine ETa on a large scale. However, several images during the growing seasons must be used to establish the necessary adjustments to the traditional FAO crop coefficient method.
Resumo:
The east coast of the AP is highly influenced by cold and dry air masses stemming from the adjacent Weddell Sea. By the contrary, the west coast jointly with the South Shetland Islands are directly exposed to the humid and relatively warm air masses from the South Pacific Ocean carried by the strong and persistent westerly winds. Systematic glaciological field studies are very scarce on both sides of the AP, among them can be mentioned a mass-balance program performed continuously since summer 1998/99 by the Instituto Antártico Argentino (IAA) on Vega Island, James Ross Archipelago, on the northeastern flank of the AP. Another continuous plurianual glaciological research has been initiated in 2010 jointly by the University of Bonn and the IAA at the Fourcade Glacier on King George Island (KGI) within the framework of the ESF project IMCOAST (FK 03F0617B). Two transects of mass balance stakes were installed from the top of the Warszawa Ice Dome down to the border of the glaciers Fourcade and Polar Club, to serve for calibration and validation of modeling efforts. The stakes were measured at the beginning and end of each summer field campaign in November 2010, February - March 2011, January - March 2012, and especially during the austral winter 2012 up to March 2013 every 10 to 14 days depending on weather conditions. During the austral winter 2013 and until June 2014 the measurements were conducted every 20 to 30 days, weather permitting. Snow density was measured as well in every field trip from June 2012 until June 2104, establishing a rather homogeneous value along the different parts of the glacier. Snow density in late summer, rho_s is usually higher than the one in late winter, rho_w. Seasonal average values were calculated for the area covered by the mass balance stakes, being rho_s= 471 Kg/m**3 and rho_w = 363 Kg/m**3.
Resumo:
Measurements of winter balance (bw) and summer balance (bs) have been carried out at Storbreen since 1949. Here we apply a simple mass balance model to study the climate sensitivity and to reconstruct the mass balance series prior to 1949. The model is calibrated and validated with data from an automatic weather station (AWS) operating in the ablation zone of Storbreen since 2001. Regression analysis revealed that bw was best modelled using precipitation data southwest of the glacier. Results from the model compared well with reported mass balance values for the period 1949-2006, obtained correlations (r) for bw and bs varied between 0.83 and 0.87 depending on model set up. Reconstruction of the mass balance series for the period 1924/1925-1948/1949 suggested a cumulative mass deficit of c. 30 m w.e. mainly due to highly negative summer balances, but also lower bw than the average for 1949-2006. Calculated change in specific mass balance for a ±1°C change in air temperature was ±0.55 m w.e., whereas a ±10 % increase in precipitation represented a change of ± 0.20 m w.e. Model results further indicated that for a 2°C warming, the ablation season will be extended by c. 30 days and that the period of ice melt at the AWS location will increase from c. 40 to c. 80 days.