976 resultados para Atlantic Ocean


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oceanic methanol, acetaldehyde, and acetone concentrations were measured during an Atlantic Meridional Transect (AMT) cruise from the UK to Chile (49°N to 39°S) in 2009. Methanol (48–361 nM) and acetone (2–24 nM) varied over the track with enrichment in the oligotrophic Northern Atlantic Gyre. Acetaldehyde showed less variability (3–9 nM) over the full extent of the transect. These oxygenated volatile organic compounds (OVOCs) were also measured subsurface, with methanol and acetaldehyde mostly showing homogeneity throughout the water column. Acetone displayed a reduction below the mixed layer. OVOC concentrations did not consistently correlate with primary production or chlorophyll-a levels in the surface Atlantic Ocean. However, we did find a novel and significant negative relationship between acetone concentration and bacterial leucine incorporation, suggesting that acetone might be removed by marine bacteria as a source of carbon. Microbial turnover of both acetone and acetaldehyde was confirmed. Modeled atmospheric data are used to estimate the likely air-side OVOC concentrations. The direction and magnitude of air-sea fluxes vary for all three OVOCs depending on location. We present evidence that the ocean may exhibit regions of acetaldehyde under-saturation. Extrapolation suggests that the Atlantic Ocean represents an overall source of these OVOCs to the atmosphere at 3, 3, and 1 Tg yr−1 for methanol, acetaldehyde, and acetone, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the troposphere, methanol (CH3OH) is present ubiquitously and second in abundance among organic gases after methane. In the surface ocean, methanol represents a supply of energy and carbon for marine microbes. Here we report direct measurements of air-sea methanol transfer along a similar to 10,000-km north-south transect of the Atlantic. The flux of methanol was consistently from the atmosphere to the ocean. Constrained by the aerodynamic limit and measured rate of air-sea sensible heat exchange, methanol transfer resembles a one-way depositional process, which suggests dissolved methanol concentrations near the water surface that are lower than what were measured at similar to 5 m depth, for reasons currently unknown. We estimate the global oceanic uptake of methanol and examine the lifetimes of this compound in the lower atmosphere and upper ocean with respect to gas exchange. We also constrain the molecular diffusional resistance above the ocean surface-an important term for improving air-sea gas exchange models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atmospheric inputs of mineral dust supply iron and other trace metals to the remote ocean and can influence the marine carbon cycle due to iron's role as a potentially limiting micronutrient. Dust generation, transport, and deposition are highly heterogeneous, and there are very few remote marine locations where dust concentrations and chemistry (e.g., iron solubility) are routinely monitored. Here we use aerosol and rainwater samples collected during 10 large-scale research cruises to estimate the atmospheric input of iron, aluminum, and manganese to four broad regions of the Atlantic Ocean over two 3 month periods for the years 2001–2005. We estimate total inputs of these metals to our study regions to be 4.2, 17, and 0.27 Gmol in April–June and 4.9, 14, and 0.19 Gmol in September–November, respectively. Inputs were highest in regions of high rainfall (the intertropical convergence zone and South Atlantic storm track), and rainfall contributed higher proportions of total input to wetter regions. By combining input estimates for total and soluble metals for these time periods, we calculated overall percentage solubilities for each metal that account for the contributions from both wet and dry depositions and the relative contributions from different aerosol types. Calculated solubilities were in the range 2.4%–9.1% for iron, 6.1%–15% for aluminum, and 54%–73% for manganese. We discuss sources of uncertainty in our estimates and compare our results to some recent estimates of atmospheric iron input to the Atlantic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large-scale biogeographical changes in the biodiversity of a key zooplankton group (calanoid copepods) were detected in the north-eastern part of the North Atlantic Ocean and its adjacent seas over the period 1960–1999. These findings provided key empirical evidence for climate change impacts on marine ecosystems at the regional to oceanic scale. Since 1999, global temperatures have continued to rise in the region. Here, we extend the analysis to the period 1958–2005 using all calanoid copepod species assemblages (nine species assemblages based on an analysis including a total of 108 calanoid species or taxa) and show that this phenomenon has been reinforced in all regions. Our study reveals that the biodiversity of calanoid copepods are responding quickly to sea surface temperature (SST) rise by moving geographically northward at a rapid rate up to about 23.16 km yr−1. Our analysis suggests that nearly half of the increase in sea temperature in the northeast Atlantic and adjacent seas is related to global temperature rises (46.35% of the total variance of temperature) while changes in both natural modes of atmospheric and oceanic circulation explain 26.45% of the total variance of temperature. Although some SST isotherms have moved northwards by an average rate of up to 21.75 km yr−1 (e.g. the North Sea), their movement cannot fully quantify all species assemblage shifts. Furthermore, the observed rates of biogeographical movements are far greater than those observed in the terrestrial realm. Here, we discuss the processes that may explain such a discrepancy and suggest that the differences are mainly explained by the fluid nature of the pelagic domain, the life cycle of the zooplankton and the lesser anthropogenic influence (e.g. exploitation, habitat fragmentation) on these organisms. We also hypothesize that despite changes in the path and intensity of the oceanic currents that may modify quickly and greatly pelagic zooplankton species, these organisms may reflect better the current impact of climate warming on ecosystems as terrestrial organisms are likely to significantly lag the current impact of climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is unambiguous and its effects are clearly detected in all functional units of the Earth system. This study presents new analyses of sea-surface temperature changes and show that climate change is affecting ecosystems of the North Atlantic. Changes are seen from phytoplankton to zooplankton to fish and are modifying the dominance of species and the structure, the diversity and the functioning of marine ecosystems. Changes also range from phenological to biogeographical shifts and have involved in some regions of the Atlantic abrupt ecosystem shifts. These alterations reflect a response of pelagic ecosystems to a warmer temperature regime. Mechanisms are complex because they are nonlinear exhibiting tipping points and varying in space and time. Sensitivity of organisms to temperature changes is high, implicating that a small temperature modification can have sustained ecosystem effects. Implications of these changes for biogeochemical cycles are discussed. Two observed changes detected in the North Sea that could have opposite effects on carbon cycle are discussed. Increase in phytoplankton, as inferred from the phytoplankton colour index derived from the Continuous Plankton Recorder (CPR) survey, has been detected in the North Sea. This pattern has been accompanied by a reduction in the abundance of the herbivorous species Calanus finmarchicus. This might have reduced the grazing pressure and increase diatomaceous ‘fluff’, therefore carbon export in the North Sea. Therefore, it could be argued that the biological carbon pump might increase in this region with sea warming. In the meantime, however, the mean size of organisms (calanoid copepods) has dropped. Such changes have implications for the turnover time of biogenic carbon in plankton organisms and the mean residence time of particulate carbon they produce. The system characterising the warmer period is more based on recycling and less on export. The increase in the minimum turnover time indicates an increase in the ecosystem metabolism, which can be considered as a response of the pelagic ecosystems to climate warming. This phenomenon could reduce carbon export. These two opposite patterns of change are examples of the diversity of mechanisms and pathways the ecosystems may exhibit with climate change. Oversimplification of current biogeochemical models, often due to lack of data and biological understanding, could lead to wrong projection on the direction ecosystems and therefore some biogeochemical cycles might take in a warmer world.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Centropages typicus is a temperate neritic-coastal species of the North Atlantic Oceans, generally found between the latitudes of the Mediterranean and the Norwegian Sea. Therefore, the species experiences a large number of environments and adjusts its life cycle in response to changes in key abiotic parameters such as temperature. Using data from the Continuous Plankton Recorder (CPR) Survey, we review the macroecology of C. typicus and factors that influence its spatial distribution, phenology and year-to-year to decadal variability. The ecological preferences are identified and quantified. Mechanisms that allow the species to occur in such different environments are discussed and hypotheses are proposed as to how the species adapts to its environment. We show that temperature and both quantity and quality of phytoplankton are important factors explaining the space and time variability of C. typicus. These results show that C. typicus will not respond only to temperature increase in the region but also to changes in phytoplankton abundance, structure and composition and timing of occurrence. Methods such as a decision tree can help to forecast expected changes in the distribution of this species with hydro-climatic forcing. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pronounced changes in fauna, extending from the English Channel in the south to the Barents Sea in the north-east and off Greenland in the north-west, have occurred in the late 1920s, the late 1960s and again in the late 1990s. We attribute these events to exchanges of subarctic and subtropical water masses in the north-eastern North Atlantic Ocean, associated with changes in the strength and extent of the subpolar gyre. These exchanges lead to variations in the influence exerted by the subarctic or Lusitanian biomes on the intermediate faunistic zone in the north-eastern Atlantic. This strong and persistent bottom-up bio-physical link is demonstrated using a numerical ocean general circulation model and data on four trophically connected levels in the food chain – phytoplankton, zooplankton, blue whiting, and pilot whales. The plankton data give a unique basin-scale depiction of these changes, and a long pilot whale record from the Faroe Islands offers an exceptional temporal perspective over three centuries. Recent advances in simulating the dynamics of the subpolar gyre suggests a potential for predicting the distribution of the main faunistic zones in the north-eastern Atlantic a few years into the future, which might facilitate a more rational management of the commercially important fisheries in this region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copepods represent the major part of the dry weight of the mesozooplankton in pelagic ecosystems and therefore have a central role in the secondary production of the North Atlantic Ocean. The calanoid copepod species Calanus finmarchicus is the main large copepod in subarctic waters of the North Atlantic, dominating the dry weight of the mesozooplankton in regions such as the northern North Sea and the Norwegian Sea. The objective of this work was to investigate the relationships between both the fundamental and realised niches of C. finmarchicus in order to better understand the future influence of global climate change on the abundance, the spatial distribution and the phenology of this key-structural species. Based on standardised Principal Component Analyses (PCAs), a macroecological approach was applied to determine factors affecting the spatial distribution of C. finmarchicus and to characterise its realised niche. Second, an ecophysiological model was used to calculate the Potential Egg Production Rate (PEPR) of C. finmarchicus and the centre of its fundamental niche. Relationships between the two niches were then investigated by correlation analysis. We found a close relationship between the fundamental and realised niches of C. finmarchicus at spatial, monthly and decadal scales. While the species is at the centre of its niche in the subarctic gyre, our joint macroecological and macrophysiological analyses show that it is at the edge of its niche in the North Sea, making the species in this region more vulnerable to temperature changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mid-ocean ridges are common features of the world’s oceans but there is a lack of understanding as to how their presence affects overlying pelagic biota. The Mid-Atlantic Ridge (MAR) is a dominant feature of the Atlantic Ocean. Here, we examined data on euphausiid distribution and abundance arising from several international research programmes and from the continuous plankton recorder. We used a generalized additive model (GAM) framework to explore spatial patterns of variability in euphausiid distribution on, and at either side of, the MAR from 60°N to 55°S in conjunction with variability in a suite of biological, physical and environmental parameters. Euphausiid species abundance peaked in mid-latitudes and was significantly higher on the ridge than in adjacent waters, but the ridge did not influence numerical abundance significantly. Sea surface temperature (SST) was the most important single factor influencing both euphausiid numerical abundance and species abundance. Increases in sea surface height variance, a proxy for mixing, increased the numerical abundance of euphausiids. GAM predictions of variability in species abundance as a function of SST and depth of the mixed layer were consistent with present theories, which suggest that pelagic niche availability is related to the thermal structure of the near surface water: more deeply-mixed water contained higher euphausiid biodiversity. In addition to exposing present distributional patterns, the GAM framework enables responses to potential future and past environmental variability including temperature change to be explored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

35S-Methionine and 3H-leucine bioassay tracer experiments were conducted on two meridional transatlantic cruises to assess whether dominant planktonic microorganisms use visible sunlight to enhance uptake of these organic molecules at ambient concentrations. The two numerically dominant groups of oceanic bacterioplankton were Prochlorococcus cyanobacteria and bacteria with low nucleic acid (LNA) content, comprising 60% SAR11-related cells. The results of flow cytometric sorting of labelled bacterioplankton cells showed that when incubated in the light, Prochlorococcus and LNA bacteria increased their uptake of amino acids on average by 50% and 23%, respectively, compared with those incubated in the dark. Amino acid uptake of Synechococcus cyanobacteria was also enhanced by visible light, but bacteria with high nucleic acid content showed no light stimulation. Additionally, differential uptake of the two amino acids by the Prochlorococcus and LNA cells was observed. The populations of these two types of cells on average completely accounted for the determined 22% light enhancement of amino acid uptake by the total bacterioplankton community, suggesting a plausible way of harnessing light energy for selectively transporting scarce nutrients that could explain the numerical dominance of these groups in situ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The TetraEther indeX of 86 carbon atoms (TEX86) temperature proxy is widely used in reconstructions of past sea surface temperature. Most current calibrations are based on surface sediment distributions of the glycerol dialkyl glycerol tetraether lipids (GDGTs) that comprise TEX86 and assume that these GDGTs are exported from the upper mixed layer. However, GDGT export from deeper waters could impact sedimentary GDGT distributions and therefore TEX86 paleothermometry. Here we examine GDGT distributions in suspended particulate matter (SPM) and underlying sediments collected from the Southeast Atlantic Ocean. Our results reveal different GDGT distributions - specifically the ratio between GDGTs bearing 2 vs. 3 cyclopentyl moieties, [2/3] ratios - between surface, subsurface (>50-200 m) and deep water (>200 m) SPM, which suggests the occurrence of in situ (deep) production that is not apparent when considering TEX86. The GDGT distributions in sediments match those of subsurface waters rather than surface waters, suggesting that they have not been preferentially derived from the upper mixed layer; this is consistent with GDGT abundances being highest in shallow subsurface SPM (˜100 to 200 m). It remains unclear what governs the different [2/3] ratios throughout the water column, but it is likely related to a combination of temperature and thaumarchaeotal community structure.