991 resultados para Astrophysics and Astronomy


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The self-modulation of waves propagating in nonlinear magnetic metamaterials is investigated. Considering the propagation of a modulated amplitude magnetic field in such a medium, we show that the self-modulation of the carrier wave leads to a spontaneous energy localization via the generation of localized envelope structures (envelope solitons), whose form and properties are discussed. These results are also supported by numerical calculations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider the modulational instability of nonlinearly interacting two-dimensional waves in deep water, which are described by a pair of two-dimensional coupled nonlinear Schrodinger equations. We derive a nonlinear dispersion relation. The latter is numerically analyzed to obtain the regions and the associated growth rates of the modulational instability. Furthermore, we follow the long term evolution of the latter by means of computer simulations of the governing nonlinear equations and demonstrate the formation of localized coherent wave envelopes. Our results should be useful for understanding the formation and nonlinear propagation characteristics of large-amplitude freak waves in deep water.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The nonlinear interaction between two laser beams in a plasma is investigated in the weakly nonlinear and relativistic regime. The evolution of the laser beams is governed by two nonlinear Schrodinger equations that are coupled with the slow plasma density response. A nonlinear dispersion relation is derived and used to study the growth rates of the Raman forward and backward scattering instabilities as well of the Brillouin and self-focusing/modulational instabilities. The nonlinear evolution of the instabilities is investigated by means of direct simulations of the time-dependent system of nonlinear equations. (c) 2006 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Theoretical and numerical studies are carried out of the nonlinear amplitude modulation of dust-ion acoustic waves propagating in an unmagnetized weakly coupled plasma comprised of electrons, positive ions, and charged dust grains, considering perturbations oblique to the carrier wave propagation direction. The stability analysis, based on a nonlinear Schrodinger-type equation, exhibits a wide instability region, which depends on both the angle theta between the modulation and propagation directions and the dust number density n(d). Explicit expressions for the instability increment and threshold are obtained. The possibility and conditions for the existence of different types of localized excitations are also discussed. (C) 2003 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tunnel ionization of room-temperature D-2 in an ultrashort (12 femtosecond) near infrared (800 nm) pump laser pulse excites a vibrational wavepacket in the D-2(+) ions; a rotational wavepacket is also excited in residual D-2 molecules. Both wavepacket types are collapsed a variable time later by an ultrashort probe pulse. We isolate the vibrational wavepacket and quantify its evolution dynamics through theoretical comparison. Requirements for quantum computation (initial coherence and quantum state retrieval) are studied using this well-defined (small number of initial states at room temperature, initial wavepacket spatially localized) single-electron molecular prototype by temporally stretching the pump and probe pulses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Intense, few-femtosecond pulse technology has enabled studies of the fastest vibrational relaxation processes. The hydrogen group vibrations can be imaged and manipulated using intense infrared pulses. Through numerical simulation, we demonstrate an example of ultrafast coherent control that could be effected with current experimental facilities, and observed using high-resolution time-of-flight spectroscopy. The proposal is a pump-probe-type technique to manipulate the D2+ ion with ultrashort pulse sequences. The simulations presented show that vibrational selection can be achieved through pulse delay. We find that the vibrational system can be purified to a two-level system thus realizing a vibrational qubit. A novel scheme for the selective transfer of population between these two levels, based on a Raman process and conditioned upon the delay time of a second control-pulse is outlined, and may enable quantum encoding with this system.