865 resultados para Associative Classifiers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present and evaluate a novel supervised recurrent neural network architecture, the SARASOM, based on the associative self-organizing map. The performance of the SARASOM is evaluated and compared with the Elman network as well as with a hidden Markov model (HMM) in a number of prediction tasks using sequences of letters, including some experiments with a reduced lexicon of 15 words. The results were very encouraging with the SARASOM learning better and performing with better accuracy than both the Elman network and the HMM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pitch Estimation, also known as Fundamental Frequency (F0) estimation, has been a popular research topic for many years, and is still investigated nowadays. The goal of Pitch Estimation is to find the pitch or fundamental frequency of a digital recording of a speech or musical notes. It plays an important role, because it is the key to identify which notes are being played and at what time. Pitch Estimation of real instruments is a very hard task to address. Each instrument has its own physical characteristics, which reflects in different spectral characteristics. Furthermore, the recording conditions can vary from studio to studio and background noises must be considered. This dissertation presents a novel approach to the problem of Pitch Estimation, using Cartesian Genetic Programming (CGP).We take advantage of evolutionary algorithms, in particular CGP, to explore and evolve complex mathematical functions that act as classifiers. These classifiers are used to identify piano notes pitches in an audio signal. To help us with the codification of the problem, we built a highly flexible CGP Toolbox, generic enough to encode different kind of programs. The encoded evolutionary algorithm is the one known as 1 + , and we can choose the value for . The toolbox is very simple to use. Settings such as the mutation probability, number of runs and generations are configurable. The cartesian representation of CGP can take multiple forms and it is able to encode function parameters. It is prepared to handle with different type of fitness functions: minimization of f(x) and maximization of f(x) and has a useful system of callbacks. We trained 61 classifiers corresponding to 61 piano notes. A training set of audio signals was used for each of the classifiers: half were signals with the same pitch as the classifier (true positive signals) and the other half were signals with different pitches (true negative signals). F-measure was used for the fitness function. Signals with the same pitch of the classifier that were correctly identified by the classifier, count as a true positives. Signals with the same pitch of the classifier that were not correctly identified by the classifier, count as a false negatives. Signals with different pitch of the classifier that were not identified by the classifier, count as a true negatives. Signals with different pitch of the classifier that were identified by the classifier, count as a false positives. Our first approach was to evolve classifiers for identifying artifical signals, created by mathematical functions: sine, sawtooth and square waves. Our function set is basically composed by filtering operations on vectors and by arithmetic operations with constants and vectors. All the classifiers correctly identified true positive signals and did not identify true negative signals. We then moved to real audio recordings. For testing the classifiers, we picked different audio signals from the ones used during the training phase. For a first approach, the obtained results were very promising, but could be improved. We have made slight changes to our approach and the number of false positives reduced 33%, compared to the first approach. We then applied the evolved classifiers to polyphonic audio signals, and the results indicate that our approach is a good starting point for addressing the problem of Pitch Estimation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This newsletter from the Soil Classifiers Advisory Council gives information about the Council including professional licenses for soil classifiers, office hours and state holidays, council members and staff and online services.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ventral premotor cortex (PMv) is believed to play a pivotal role in a multitude of visuomotor behaviors, such as sensory-guided goal-directed visuomotor transformations, arbitrary visuomotor mapping, and hyper-learnt visuomotor associations underlying automatic imitative tendencies. All these functions are likely carried out through the copious projections connecting PMv to the primary motor cortex (M1). Yet, causal evidence investigating the functional relevance of the PMv-M1 network remains elusive and scarce. In the studies reported in this thesis we addressed this issue using a transcranial magnetic stimulation (TMS) protocol called cortico-cortical paired associative stimulation (ccPAS), which relies on multisite stimulation to induce Hebbian spike-timing dependent plasticity (STDP) by repeatedly stimulating the pathway connecting two target areas to manipulate their connectivity. Firstly, we show that ccPAS protocols informed by both short- and long-latency PMv-M1 interactions effectively modulate connectivity between the two nodes. Then, by pre-activating the network to apply ccPAS in a state-dependent manner, we were able to selectively target specific functional visuo-motor pathways, demonstrating the relevance of PMv-M1 connectivity to arbitrary visuomotor mapping. Subsequently, we addressed the PMv-to-M1 role in automatic imitation, and demonstrated that its connectivity manipulation has a corresponding impact on automatic imitative tendencies. Finally, by combining dual-coil TMS connectivity assessments and ccPAS in young and elderly individuals, we traced effective connectivity of premotor-motor networks and tested their plasticity and relevance to manual dexterity and force in healthy ageing. Our findings provide unprecedent causal evidence of the functional role of the PMv-to-M1 network in young and elderly individuals. The studies presented in this thesis suggest that ccPAS can effectively modulate the strength of connectivity between targeted areas, and coherently manipulate a networks’ behavioral output. Results open new research prospects into the causal role of cortico-cortical connectivity, and provide necessary information to the development of clinical interventions based on connectivity manipulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Universidade Estadual de Campinas. Faculdade de Educação Física

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho foi realizado com o objetivo de avaliar os efeitos do uso de leucena e levedura em dietas para bovinos sobre o metabolismo ruminal, incluindo o pH e as produções de ácido graxos voláteis (AGV), amônia e gás metano. Quatro bovinos machos com 800 kg e fistulados no rúmen foram mantidos em quadrado latino 4 × 4, em arranjo fatorial 2 × 2, composto de dois níveis de leucena (20 e 50% MS) e feno de capim coast-cross na presença ou ausência de levedura. Não houve influência das dietas nos valores médios de pH (média 6,82) e nas concentrações de amônia no rúmen, que variaram de 18 a 21 mg/100 mL. Houve interação entre níveis de leucena e levedura na concentração total de AGV. As dietas não diferiram quanto à concentração de ácido acético, mas os animais alimentados com a dieta com 50% de leucena e contendo levedura apresentaram maiores concentrações médias de ácido propiônico (média 19,14 mM). A emissão de metano reduziu em12,3% em relação à mesma dieta sem levedura e em 17,2% quando os animais foram alimentados com 20% de leucena com levedura. Verificou-se efeito associativo de leucena, quando fornecida em alto nível na dieta (50% MS), e levedura na redução da emissão de metano e na melhoria no padrão de fermentação no rúmen, o que pode reduzir as perdas de energia e melhorar eficiência energética do animal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the imprecise nature of biological experiments, biological data is often characterized by the presence of redundant and noisy data. This may be due to errors that occurred during data collection, such as contaminations in laboratorial samples. It is the case of gene expression data, where the equipments and tools currently used frequently produce noisy biological data. Machine Learning algorithms have been successfully used in gene expression data analysis. Although many Machine Learning algorithms can deal with noise, detecting and removing noisy instances from the training data set can help the induction of the target hypothesis. This paper evaluates the use of distance-based pre-processing techniques for noise detection in gene expression data classification problems. This evaluation analyzes the effectiveness of the techniques investigated in removing noisy data, measured by the accuracy obtained by different Machine Learning classifiers over the pre-processed data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work proposes a new approach using a committee machine of artificial neural networks to classify masses found in mammograms as benign or malignant. Three shape factors, three edge-sharpness measures, and 14 texture measures are used for the classification of 20 regions of interest (ROIs) related to malignant tumors and 37 ROIs related to benign masses. A group of multilayer perceptrons (MLPs) is employed as a committee machine of neural network classifiers. The classification results are reached by combining the responses of the individual classifiers. Experiments involving changes in the learning algorithm of the committee machine are conducted. The classification accuracy is evaluated using the area A. under the receiver operating characteristics (ROC) curve. The A, result for the committee machine is compared with the A, results obtained using MLPs and single-layer perceptrons (SLPs), as well as a linear discriminant analysis (LDA) classifier Tests are carried out using the student's t-distribution. The committee machine classifier outperforms the MLP SLP, and LDA classifiers in the following cases: with the shape measure of spiculation index, the A, values of the four methods are, in order 0.93, 0.84, 0.75, and 0.76; and with the edge-sharpness measure of acutance, the values are 0.79, 0.70, 0.69, and 0.74. Although the features with which improvement is obtained with the committee machines are not the same as those that provided the maximal value of A(z) (A(z) = 0.99 with some shape features, with or without the committee machine), they correspond to features that are not critically dependent on the accuracy of the boundaries of the masses, which is an important result. (c) 2008 SPIE and IS&T.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Online music databases have increased significantly as a consequence of the rapid growth of the Internet and digital audio, requiring the development of faster and more efficient tools for music content analysis. Musical genres are widely used to organize music collections. In this paper, the problem of automatic single and multi-label music genre classification is addressed by exploring rhythm-based features obtained from a respective complex network representation. A Markov model is built in order to analyse the temporal sequence of rhythmic notation events. Feature analysis is performed by using two multi-variate statistical approaches: principal components analysis (unsupervised) and linear discriminant analysis (supervised). Similarly, two classifiers are applied in order to identify the category of rhythms: parametric Bayesian classifier under the Gaussian hypothesis (supervised) and agglomerative hierarchical clustering (unsupervised). Qualitative results obtained by using the kappa coefficient and the obtained clusters corroborated the effectiveness of the proposed method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the modeling of a weed infestation risk inference system that implements a collaborative inference scheme based on rules extracted from two Bayesian network classifiers. The first Bayesian classifier infers a categorical variable value for the weed-crop competitiveness using as input categorical variables for the total density of weeds and corresponding proportions of narrow and broad-leaved weeds. The inferred categorical variable values for the weed-crop competitiveness along with three other categorical variables extracted from estimated maps for the weed seed production and weed coverage are then used as input for a second Bayesian network classifier to infer categorical variables values for the risk of infestation. Weed biomass and yield loss data samples are used to learn the probability relationship among the nodes of the first and second Bayesian classifiers in a supervised fashion, respectively. For comparison purposes, two types of Bayesian network structures are considered, namely an expert-based Bayesian classifier and a naive Bayes classifier. The inference system focused on the knowledge interpretation by translating a Bayesian classifier into a set of classification rules. The results obtained for the risk inference in a corn-crop field are presented and discussed. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a formulation to deal with dynamic thermomechanical problems by the finite element method. The proposed methodology is based on the minimum potential energy theorem written regarding nodal positions, not displacements, to solve the mechanical problem. The thermal problem is solved by a regular finite element method. Such formulation has the advantage of being simple and accurate. As a solution strategy, it has been used as a natural split of the thermomechanical problem, usually called isothermal split or isothermal staggered algorithm. Usual internal variables and the additive decomposition of the strain tensor have been adopted to model the plastic behavior. Four examples are presented to show the applicability of the technique. The results are compared with other authors` numerical solutions and experimental results. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a physical non-linear formulation to deal with steel fiber reinforced concrete by the finite element method. The proposed formulation allows the consideration of short or long fibers placed arbitrarily inside a continuum domain (matrix). The most important feature of the formulation is that no additional degree of freedom is introduced in the pre-existent finite element numerical system to consider any distribution or quantity of fiber inclusions. In other words, the size of the system of equations used to solve a non-reinforced medium is the same as the one used to solve the reinforced counterpart. Another important characteristic of the formulation is the reduced work required by the user to introduce reinforcements, avoiding ""rebar"" elements, node by node geometrical definitions or even complex mesh generation. Bounded connection between long fibers and continuum is considered, for short fibers a simplified approach is proposed to consider splitting. Non-associative plasticity is adopted for the continuum and one dimensional plasticity is adopted to model fibers. Examples are presented in order to show the capabilities of the formulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This technical note discusses the possibility of using a more simplified scheme to estimate the plastic multiplier when some material shows volume changes, e.g. soil, balsa wood foam and other similar materials. Two procedures regarding volume changes during the plastic phase are discussed here. The first one is the classic procedure applied to non-associative plasticity, for which a Drucker-Prager-like surface is adopted to represent the plastic potential. For the second procedure, the plastic potential is not explicitly known, however, its orthogonal direction is chosen respecting a plastic volume change parameter similar to Poisson`s ratio. Copyright (C) 2007 John Wiley & Sons, Ltd.