886 resultados para Artificial leaves
Resumo:
Duas larvas de Aedes scapularis foram encontradas em um criadouro artificial, no Município de Sertaneja, Norte do Estado do Paraná, Brasil, durante atividade de rotina para o controle de vetores da dengue.
Resumo:
This paper presents an artificial neural network approach for short-term wind power forecasting in Portugal. The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. The accuracy of the wind power forecasting attained with the proposed approach is evaluated against persistence and ARIMA approaches, reporting the numerical results from a real-world case study.
Resumo:
This paper presents an artificial neural network applied to the forecasting of electricity market prices, with the special feature of being dynamic. The dynamism is verified at two different levels. The first level is characterized as a re-training of the network in every iteration, so that the artificial neural network can able to consider the most recent data at all times, and constantly adapt itself to the most recent happenings. The second level considers the adaptation of the neural network’s execution time depending on the circumstances of its use. The execution time adaptation is performed through the automatic adjustment of the amount of data considered for training the network. This is an advantageous and indispensable feature for this neural network’s integration in ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to the market negotiating players of MASCEM (Multi-Agent Simulator of Competitive Electricity Markets).
Resumo:
OBJETIVO: Avaliar as redes neurais recorrentes enquanto técnica preditiva para séries temporais em saúde. MÉTODOS: O estudo foi realizado durante uma epidemia de cólera ocorrida no Estado do Ceará, em 1993 e 1994, a partir da sobremortalidade tendo como causa básica as infecções intestinais mal definidas (CID-9). O número mensal de óbitos por essa causa, referente ao período de 1979 a 1995 no Estado do Ceará, foram obtidos do Sistema de Informação de Mortalidade (SIM) do Ministério da Saúde. Estruturou-se uma rede com dois neurônios na camada de entrada, 12 na camada oculta, um neurônio na camada de saída e um na camada de memória. Todas as funções de ativação eram a função logística. O treinamento foi realizado pelo método de backpropagation, com taxa de aprendizado de 0,01 e momentum de 0,9, com dados de janeiro de 1979 a junho de 1991. O critério para fim do treinamento foi atingir 22.000 epochs. Compararam-se os resultados com os de um modelo de regressão binomial negativa. RESULTADOS: A predição da rede neural a médio prazo foi adequada, em dezembro de 1993 e novembro e dezembro de 1994. O número de óbitos registrados foi superior ao limite do intervalo de confiança. Já o modelo regressivo detectou sobremortalidade a partir de março de 1992. CONCLUSÕES: A rede neural se mostrou capaz de predição, principalmente no início do período, como também ao detectar uma alteração concomitante e posterior à ocorrência da epidemia de cólera. No entanto, foi menos precisa do que o modelo de regressão binomial, que se mostrou mais sensível para detectar aberrações concomitantes à circulação da cólera.
Resumo:
A temática dos recifes artificiais multifuncionais é relativamente recente, sendo que o primeiro recife artificial multifuncional construído data do ano de 1999 (Perth, Austrália). A palavra multifuncional está associada aos múltiplos propósitos que se podem atingir com a construção de uma estrutura destas, sendo eles, a proteção costeira, o aumento da biodiversidade local, a melhoria da qualidade das ondas para o Surf e a promoção do turismo ligado aos desportos de ondas. Para dar resposta a um caso de proteção costeira, na zona marítima adjacente à praia de Leirosa, Portugal, foi pensada uma construção de um recife artificial que funcione como obra de proteção do sistema dunar local e que, adicionalmente melhore as condições locais para a prática de Surf. Este trabalho descreve a análise de duas soluções de recife (em forma de “V”, formando um ângulo de 45º e 66º, entre si), através dos valores das características das ondas (altura, período e direção) e parâmetros de surfabilidade (linha de rebentação, número de Iribarren e ângulo de rebentação), para uma gama alargada de condições de agitação frequente. Para tal, foi necessário caracterizar a agitação marítima, através do modelo numérico SWAN para determinação dos casos de agitação mais frequentes na zona marítima adjacente ao local de implantação do recife e para, posteriormente, se proceder à sua utilização no modelo numérico DREAMS, que permitiu a simulação da propagação das ondas sobre o recife. A comparação dos resultados do modelo numérico DREAMS para as situações de com e sem recife (para as duas soluções de recife) permitiu avaliar a influência do mesmo em termos de alturas de onda, linha de rebentação e ângulo de rebentação, tendo-se chegado a resultados satisfatórios do ponto de vista do melhoramento das condições locais para a prática do Surf.
Resumo:
Power Systems (PS), have been affected by substantial penetration of Distributed Generation (DG) and the operation in competitive environments. The future PS will have to deal with large-scale integration of DG and other distributed energy resources (DER), such as storage means, and provide to market agents the means to ensure a flexible and secure operation. Virtual power players (VPP) can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. This paper proposes an artificial neural network (ANN) based methodology to support VPP resource schedule. The trained network is able to achieve good schedule results requiring modest computational means. A real data test case is presented.
Resumo:
Control Centre operators are essential to assure a good performance of Power Systems. Operators’ actions are critical in dealing with incidents, especially severe faults, like blackouts. In this paper we present an Intelligent Tutoring approach for training Portuguese Control Centre operators in incident analysis and diagnosis, and service restoration of Power Systems, offering context awareness and an easy integration in the working environment.
Resumo:
Copyright © 2010 Elsevier B.V. All rights reserved.
Resumo:
EPIA 2013 - XVI Portuguese Conference on Artificial Intelligence Angra do Heroísmo, Azores, Portugal, 9 – 12 September.
Resumo:
Tese de Doutoramento, Geografia (Ordenamento do Território), 25 de Novembro de 2013, Universidade dos Açores.
Resumo:
Ancillary services represent a good business opportunity that must be considered by market players. This paper presents a new methodology for ancillary services market dispatch. The method considers the bids submitted to the market and includes a market clearing mechanism based on deterministic optimization. An Artificial Neural Network is used for day-ahead prediction of Regulation Down, regulation-up, Spin Reserve and Non-Spin Reserve requirements. Two test cases based on California Independent System Operator data concerning dispatch of Regulation Down, Regulation Up, Spin Reserve and Non-Spin Reserve services are included in this paper to illustrate the application of the proposed method: (1) dispatch considering simple bids; (2) dispatch considering complex bids.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Leaves are mainly responsible for food production in vascular plants. Studying individual leaves can reveal important characteristics of the whole plant, namely its health condition, nutrient status, the presence of viruses and rooting ability. One technique that has been used for this purpose is Electrical Impedance Spectroscopy, which consists of determining the electrical impedance spectrum of the leaf. In this paper we use EIS and apply the tools of Fractional Calculus to model and characterize six species. Two modeling approaches are proposed: firstly, Resistance, Inductance, Capacitance electrical networks are used to approximate the leaves’ impedance spectra; afterwards, fractional-order transfer functions are considered. In both cases the model parameters can be correlated with physical characteristics of the leaves.
Resumo:
Decision making in any environmental domain is a complex and demanding activity, justifying the development of dedicated decision support systems. Every decision is confronted with a large variety and amount of constraints to satisfy as well as contradictory interests that must be sensibly accommodated. The first stage of a project evaluation is its submission to the relevant group of public (and private) agencies. The individual role of each agency is to verify, within its domain of competence, the fulfilment of the set of applicable regulations. The scope of the involved agencies is wide and ranges from evaluation abilities on the technical or economical domains to evaluation competences on the environmental or social areas. The second project evaluation stage involves the gathering of the recommendations of the individual agencies and their justified merge to produce the final conclusion. The incorporation and accommodation of the consulted agencies opinions is of extreme importance: opinions may not only differ, but can be interdependent, complementary, irreconcilable or, simply, independent. The definition of adequate methodologies to sensibly merge, whenever possible, the existing perspectives while preserving the overall legality of the system, will lead to the making of sound justified decisions. The proposed Environmental Decision Support System models the project evaluation activity and aims to assist developers in the selection of adequate locations for their projects, guaranteeing their compliance with the applicable regulations.
Resumo:
The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.