976 resultados para Aromatic ketone
Resumo:
Six new copper complexes of di-2-pyridyl ketone nicotinoylhydrazone (HDKN) have been synthesized. The complexes have been characterized by a variety of spectroscopic techniques and the structure of [Cu(DKN)2]·H2O has been determined by single crystal X-ray diffraction. The compound [Cu(DKN)2]·H2O crystallized in the monoclinic space group P21 and has a distorted octahedral geometry. The IR spectra revealed the presence of variable modes of chelation for the investigated ligand. The EPR spectra of compounds [Cu2(DKN)2( -N3)2] and [Cu2(DKN)2( -NCS)2] in polycrystalline state suggest a dimeric structure as they exhibited a half field signal, which indicate the presence of a weak interaction between two Cu(II) ions in these complexes
Resumo:
An erratum to the article "The aromatic fluctuation index (FLU): a new aromaticity index based on electron delocalization", published in The Journal Chemistry of Physics, 2005, v.122, art. no.014109. Values FLU have been corrected in the last column of Table I because they were not correct
Resumo:
In this work, the aromatic fluctuation index (FLU) that describes the fluctuation of electronic charge between adjacent atoms in a given ring is introduced as a new aromaticity measure. This new electronic criterion of aromaticity is based on the fact that aromaticity is related to the cyclic delocalized circulation of π electrons. It is defined not only considering the amount of electron sharing between contiguous atoms, which should be substantial in aromatic molecules, but also taking into account the similarity of electron sharing between adjacent atoms. For a series of rings in 15 planar polycyclic aromatic hydrocarbons, we have found that, in general, FLU is strongly correlated with other widely used indicators of local aromaticity, such as the harmonic-oscillator model of aromaticity, the nucleus independent chemical shift, and the para-delocalization index (PDI). In contrast to PDI, the FLU index can be applied to study the aromaticity of rings with any number of members and it can be used to analyze both the local and global aromatic character of rings and molecules
Resumo:
Chemical methods to predict the bioavailable fraction of organic contaminants are usually validated in the literature by comparison with established bioassays. A soil spiked with polycyclic aromatic hydrocarbons (PAHs) was aged over six months and subjected to butanol, cyclodextrin and tenax extractions as well as an exhaustive extraction to determine total PAH concentrations at several time points. Earthworm (Eisenia fetida) and rye grass root (Lolium multiflorum) accumulation bioassays were conducted in parallel. Butanol extractions gave the best relationship with earthworm accumulation (r2 ≤ 0.54, p ≤ 0.01); cyclodextrin, butanol and acetone–hexane extractions all gave good predictions of accumulation in rye grass roots (r2 ≤ 0.86, p ≤ 0.01). However, the profile of the PAHs extracted by the different chemical methods was significantly different (p < 0.01) to that accumulated in the organisms. Biota accumulated a higher proportion of the heavier 4-ringed PAHs. It is concluded that bioaccumulation is a complex process that cannot be predicted by measuring the bioavailable fraction alone. The ability of chemical methods to predict PAH accumulation in Eisenia fetida and Lolium multiflorum was hindered by the varied metabolic fate of the different PAHs within the organisms.
Resumo:
An understanding of the primary pathways of plant uptake of organic pollutants is important to enable the risks from crops grown on contaminated soils to be assessed. A series of experiments were undertaken to quantify the importance of the pathways of contamination and the Subsequent transport within the plant using white clover plants grown in solution culture. Root uptake was primarily an absorption process, but a component of the contamination was a result of the transpiration flux to the shoot for higher Solubility compounds. The root contamination can be easily predicted using a simple relationship with K-OW, although if a composition model was used based on lipid content, a significant under prediction of the contamination was observed. Shoot uptake was driven by the transpiration stream flux which was related to the solubility of the individual PAH rather than the K-OW. However, the experiment was over a short duration, 6 days, and models based on K-OW may be better for crops grown in the field where the vegetation will approach equilibrium and transpiration cannot easily be measured, A significant fraction of the shoot contamination resulted from aerial deposition derived from volatilized PAH. This pathway was more significant for compounds approaching log K-OA > 9 and log K-AW < -3. The shoot uptake pathways need further investigation to enable them to be modeled separately, There was no evidence of significant systemic transport of the PAR so transfer outside the transpiration stream is likely to be limited.
Resumo:
A total of 94 European eels (Anguilla anguilla) were collected from five estuaries in the UK. The deconjugated metabolites of polycyclic aromatic hydrocarbons (PAHs) in the bile of the eels were separated using HPLC. Six PAH metabolites were identified: 1-hydroxy (1-OH) metabolites of phenanthrene, pyrene and chrysene; and the 1-OH, 3-OH and 7,8 dihydrodiol metabolites of benzo[a]pyrene (BaP). The mean concentration of the six metabolites was greatest in eels from the Tyne (49 muM) followed by the Wear (33 muM), Tees (19 muM), Thames (4 muM) and Severn (2 muM) estuaries. Although 1-OH pyrene was always the dominant compound, there were significant differences (P<0.05) between sites and between estuaries for some metabolites. Normalising the molar concentration of the bile metabolites to the bile biliverdin absorbance reduced sample variation. When the metabolites identified were-each expressed as a percentage of the total detected, the metabolite profile was characteristic for each estuary. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The rate coefficients for the reaction between atomic chlorine and a number of naturally occurring species have been measured at ambient temperature and atmospheric pressure using the relative rate technique. The values obtained were (4.0 ± 0.8) × 10-10, (2.1 ± 0.5) × 10-10, (3.2 ± 0.5) × 10-10, and (4.9 ± 0.5) × 10-10 cm3 molecule-1 s-1, for reactions with isoprene, methyl vinyl ketone, methacrolein and δ3-carene, respectively. The value obtained for isoprene compares favourably with previously reported values. No values have been reported to date for the rate constants of the other reactions.
Resumo:
An elastomeric, supramolecular healable polymer blend, comprising a chain-folding polyimide and a telechelic polyurethane with pyrenyl endgroups, is compatibilised by aromatic π−π stacking between the π-electron-deficient diimide groups and the π-electron-rich pyrenyl units. This inter-polymer interaction is key to forming a tough, healable, elastomeric material. Variable temperature FTIR analysis of the bulk material also conclusively demonstrates the presence of hydrogen bonding, which complements the π–π stacking interactions. Variable temperature SAXS analysis shows that the healable polymeric blend has a nanophase-separated morphology, and that the X-ray contrast between the two types of domain increases with increasing temperature, a feature that is repeatable over several heating and cooling cycles. A fractured sample of this material reproducibly regains more than 95% of the tensile modulus, 91% of the elongation to break, and 77% of the modulus of toughness of the pristine material.
Resumo:
We report herein, the first generation of unsymmetrical ketone-derived chiral stabilized azomethine ylides. Intrairiolecular and intermolecular cycloaddition strategies have been utilized to synthesize both an enantiornerically pure bicyclic proline derivative and an enantionierically pure beta-hydroxy-alpha-amino acid.
Resumo:
The synthesis of a series of poly(aromatic amide) dendrimers up to the second generation is described herein. The AB, building block used throughout the synthesis of the dendrimers was the allyl ester of 3,5-diaminocinnamic acid, which has been synthesized from 3,5-dinitrobenzoic acid in good yield with use of a four-step procedure. Dendron synthesis was achieved via a convergent approach with use of a sequence of deprotection/coupling steps. Two commercially available alcohols, L-menthol and citronellol, were coupled to the AB(2) monomer by using an alkyl diacid spacer and two core units; 1,7-diaminoheptane and tris(2-aminoethyl)amine have been used to produce the final dendrimers. Characterization was carried out by NMR and IR spectroscopies, MALDI-TOF mass spectrometry, GPC, and DSC. The novel monomer and dendritic derivatives exhibited a strong fluorescence emission in the visible region (lambda approximate to 500 nm) of the spectrum and a weak emission in the near-infrared (lambda approximate to 850 nm) upon excitation in the near-UV region. The fluorescence emission characteristics were found to be solvent and dendrimer generation dependent.