962 resultados para Aromatic Rings
Resumo:
The use of DNA adduct measurement as a biomarker of exposure to polycyclic aromatic hydrocarbons (PAHs) is now well established in ecotoxicology. In particular, DNA adduct levels in aquatic organisms has been found to produce a better correlation with PAH exposure than PAH concentrations in organisms. DNA adducts levels are most commonly determined using the P-32-postlabelling assay which measures total aromatic adducts. The relationship between relative DNA adduct formation and carcinogenicity has been investigated for a number of carcinogenic and non-carcinogenic PAHs using an in vitro system. Our results demonstrate that relatively high levels of DNA adducts can be produced by some non-carcinogenic PAHs, while other non-carcinogenic compounds do not produce detectable adducts. In addition, it has been shown that all carcinogenic PAHs investigated produce DNAadducts and that a relationship exists between relative adduct formation and carcinogenic potency. An investigation of adduct levels in fish liver and crustacean hepatopancreas in Oxley Ck, Brisbane has shown that higher than expected DNA adduct levels were correlated with the presence of carcinogenic and noncarcinogenic PAHs with high relative adduct forming potential.
Resumo:
A variety of polycyclic aromatic hydrocarbons and their dihydrodiol derivatives, arylamines, heterocyclic amines, and nitroarenes, were incubated with cDNA-based recombinant (Escherichia coli or Trichoplusia ni) systems expressing different forms of human cytochrome P450 (P450 or CYP) and NADPH-P450 reductase using Salmonella typhimurium, tester strain NM2009, and the resultant DNA damage caused by the reactive metabolites was detected by measuring expression of umu gene in the cells. Recombinant (bacterial) CYP1A1 was slightly more active than any of four CYP1B1 allelic variants, CYP1B1*1, CYP1B1*2, CYP1B1*3, and CYP1B1*6, in catalyzing activation of chrysene-1,2-diol, benz[a]anthracene-trans-1,2-, 3,4-, 5,6-, and 8,9-diol, fluoranthene-2,3-diol, dibenzo[a]pyrene, benzo[c]phenanthrene, and dibenz[a,h]anthracene and several arylamines and heterocyclic amines, whereas CYP1A1 and CYP1B1 enzymes had essentially similar catalytic specificities toward other procarcinogens, such as (+)-, (-)-, and (+/-)-benzo[a]pyrene-7,8-diol, 5-methylchrysene-1,2-diol, 7,12-dimethylbenz[a]anthracene-3,4-diol, dibenzo[a,l]pyrene-11,12-diol, benzo[b]fluoranthene-9,10-diol, benzo[c]chrysene, 5,6-dimethylchrysene-1,2-diol, benzo[c]phenanthrene-3,4-diol, 7,12-dimethylbenz[a]anthracene, benzo[a]pyrene, 5-methylchrysene, and benz[a]anthracene. We also determined activation of these procarcinogens by recombinant (T. ni) human P450 enzymes in S. typhimurium NM2009. There were good correlations between activities of procarcinogen activation by CYP1A1 preparations expressed in E. coli and T. ni cells, although basal activities with three lots of CYP1B1 in T. ni cells were very high without substrates and NADPH in our assay system. Using 14 forms of human P450S (but not CYP1B1) (in T. ni cells), we found that CY1P1A2, 2C9, 3A4, and 2C19 catalyzed activation of several of polycyclic aromatic hydrocarbons at much slower rates than those catalyzed by CYP1A1 and that other enzymes, including CYP2A6, 2B6, 2C8, 2C18, 2D6, 2E1, 3A5, 3A7, and 4A11, were almost inactive in the activation of polycyclic aromatic hydrocarbons examined here.
Resumo:
Adsorption of model aromatic compounds onto two untreated activated carbons with similar physical and chemical properties is investigated. The solution pH of all experiments was lowered so that all solutes were in their molecular forms. It is shown that the difference in the maximum adsorption capacities of the solutes was mainly attributed to the difference in the sizes of the molecules. This new experimental finding is significant to gaining insight into the orientation of the adsorbed phase and hence the adsorption mechanism of aromatic compounds in aqueous solutions. It is shown that the adsorption of aromatic compounds in a stacked motif for pi-pi interactions is unlikely, and in the absence of physical restrictions such as pore width, a T-shaped motif is the preferred orientation.
Resumo:
Adsorption of four dissociating aromatic compounds and one nondissociating compound on a commercial activated carbon is investigated systematically. All adsorption experiments were carried out in pH-controlled aqueous solutions. The adsorption isotherms are fitted to the binary homogeneous Langmuir model, where the concentrations of the molecular and the ionic species in the liquid phase are expressed in terms of the sum of the two and the degree of solute ionization. Examination of the relationships between the solution pH, the degree of ionization of the solutes, and the model parameters is found to give new insights into the adsorption process. Furthermore, this is used to correlate the variation of the monolayer capacity with the solution pH.
Resumo:
Adsorption of one nondissociating and four dissociating aromatic compounds onto three untreated activated carbons from dilute aqueous solutions were investigated. All adsorption experiments were preformed in pH-controlled solutions. The experimental isotherms were analyzed using the homogeneous Langmuir model. The surface chemical properties of the activated carbons were characterized using a combination of water adsorption, X-ray photoemission spectroscopy, and mass titration. These data give rise to a new insight into the adsorption mechanism of aromatic solutes, in their molecular and ionic forms, onto untreated activated carbons. It was found that, for the hydrophilic activated carbons, the dominant adsorption forces were observed to be dipolar interactions when the solutes were in their molecular form whereas dispersive forces, such as pi-pi interactions, were most likely dominant in the case of the basic hydrophobic carbons. However, when the solutes were in their ionic form adsorption occurs in all cases through dispersive forces.
Resumo:
The adsorption of three aromatic compounds on to an untreated carbon was investigated. The solution pH was lowered in all experiments so that all the solutes were in their molecular forms. It was shown that the difference in the maximum adsorption of the solutes was mainly a result of the difference in the sizes of the molecules and their functional groups. Further-more, it was illustrated that the packing arrangement was most likely edge-to-face (sorbate-sorbent) with various tilt angles. On the other hand, the affinity and heterogeneity of the adsorption systems were apparently related to the pK(a) values of the solutes.
Resumo:
The modelling of the experimental data of the extraction of the volatile oil from six aromatic plants (coriander, fennel, savoury, winter savoury, cotton lavender and thyme) was performed using five mathematical models, based on differential mass balances. In all cases the extraction was internal diffusion controlled and the internal mass transfer coefficienty (k(s)) have been found to change with pressure, temperature and particle size. For fennel, savoury and cotton lavender, the external mass transfer and the equilibrium phase also influenced the second extraction period, since k(s) changed with the tested flow rates. In general, the axial dispersion coefficient could be neglected for the conditions studied, since Peclet numbers were high. On the other hand, the solute-matrix interaction had to be considered in order to ensure a satisfactory description of the experimental data.
Resumo:
A discussion of the most interesting results obtained in our laboratories, during the supercritical CO(2) extraction of bioactive compounds from microalgae and volatile oils from aromatic plants, was carried out. Concerning the microalgae, the studies on Botryococcus braunii and Chlorella vulgaris were selected. Hydrocarbons from the first microalgae, which are mainly linear alkadienes (C(23)-C(31)) with an odd number of carbon atoms, were selectively extracted at 313 K increasing the pressure up to 30.0 MPa. These hydrocarbons are easily extracted at this pressure, since they are located outside the cellular walls. The extraction of carotenoids, mainly canthaxanthin and astaxanthin, from C. vulgaris is more difficult. The extraction yield of these components at 313 K and 35.0 MPa increased with the degree of crushing of the microalga, since they are not extracellular. On the other hand, for the extraction of volatile oils from aromatic plants, studies on Mentha pulegium and Satureja montana L were chosen. For the first aromatic plant, the composition of the volatile and essential oils was similar, the main components being the pulegone and menthone. However, this volatile oil contained small amounts of waxes, which content decreased with decreasing particle size of the plant matrix. For S. montana L it was also observed that both oils have a similar composition, the main components being carvacrol and thymol. The main difference is the relative amount of thymoquinone, which content can be 15 times higher in volatile oil. This oxygenated monoterpene has important biological activities. Moreover, experimental studies on anticholinesterase activity of supercritical extracts of S. montana were also carried out. The supercritical nonvolatile fraction, which presented the highest content of the protocatechuic, vanilic, chlorogenic and (+)-catechin acids, is the most promising inhibitor of the enzyme butyrylcholinesterase. In contrast, the Soxhlet acetone extract did not affect the activity of this enzyme at the concentrations tested. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
6th Spanish-Portuguese-Japanese Organic Chemistry Symposium, Lisboa, de 18 a 20 de Julho de 2012 (Poster Communication).
Resumo:
The concentrations of 18 polycyclic aromatic hydrocarbons (PAHs) were determined in three commercially valuable fish species (sardine, Sardina pilchardus; chub mackerel, Scomber japonicus; and horse mackerel, Trachurus trachurus) from the Atlantic Ocean. Specimens were collected seasonally during 2007–2009. Only low molecular weight PAHs were detected, namely, naphthalene, acenaphthene, fluorene and phenanthrene. Chub mackerel (1.80–19.90 microg/kg ww) revealed to be significantly more contaminated than horse mackerel (2.73–10.0 microg/kg ww) and sardine (2.29–14.18 microg/kg ww). Inter-specific and inter-season comparisons of PAHs bioaccumulation were statistically assessed. The more relevant statistical correlations were observed between PAH amounts and total fat content (significant positive relationships, p < 0.05), and season (sardine displayed higher amounts in autumn–winter while the mackerel species showed globally the inverse behavior). The health risks by consumption of these species were assessed and shown to present no threat to public health concerning PAH intakes.
Resumo:
An accurate and sensitive method for determination of 18 polycyclic aromatic hydrocarbons (PAHs) (16 PAHs considered by USEPA as priority pollutants, dibenzo[a,l]pyrene and benzo[j]fluoranthene) in fish samples was validated. Analysis was performed by microwave-assisted extraction and liquid chromatography with photodiode array and fluorescence detection. Response surface methodology was used to find the optimal extraction parameters. Validation of the overall methodology was performed by spiking assays at four levels and using SRM 2977. Quantification limits ranging from 0.15–27.16 ng/g wet weight were obtained. The established method was applied in edible tissues of three commonly consumed and commercially valuable fish species (sardine, chub mackerel and horse mackerel) originated from Atlantic Ocean. Variable levels of naphthalene (1.03–2.95 ng/g wet weight), fluorene (0.34–1.09 ng/g wet weight) and phenanthrene (0.34–3.54 ng/g wet weight) were detected in the analysed samples. None of the samples contained detectable amounts of benzo[a]pyrene, the marker used for evaluating the occurrence and carcinogenic effects of PAHs in food.
Resumo:
QuEChERS method was evaluated for extraction of 16 PAHs from fish samples. For a selective measurement of the compounds, extracts were analysed by LC with fluorescence detection. The overall analytical procedure was validated by systematic recovery experiments at three levels and by using the standard reference material SRM 2977 (mussel tissue). The targeted contaminants, except naphthalene and acenaphthene, were successfully extracted from SRM 2977 with recoveries ranging from 63.5–110.0% with variation coefficients not exceeding 8%. The optimum QuEChERS conditions were the following: 5 g of homogenised fish sample, 10 mL of ACN, agitation performed by vortex during 3 min. Quantification limits ranging from 0.12– 1.90 ng/g wet weight (0.30–4.70 µg/L) were obtained. The optimized methodology was applied to assess the safety concerning PAHs contents of horse mackerel (Trachurus trachurus), chub mackerel (Scomber japonicus), sardine (Sardina pilchardus) and farmed seabass (Dicentrarchus labrax). Although benzo(a)pyrene, the marker used for evaluating the carcinogenic risk of PAHs in food, was not detected in the analysed samples (89 individuals corresponding to 27 homogenized samples), the overall mean concentration ranged from 2.52 l 1.20 ng/g in horse mackerel to 14.6 ± 2.8 ng/ g in farmed seabass. Significant differences were found between the mean PAHs concentrations of the four groups.