991 resultados para Argumentative operator
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We define the Virasoro algebra action on imaginary Verma modules for affine and construct an analogue of the Knizhnik-Zamolodchikov equation in the operator form. Both these results are based on a realization of imaginary Verma modules in terms of sums of partial differential operators.
Resumo:
La tesi presenta il criterio di regolarità di Wiener dell’ambito classico dell’operatore di Laplace ed in seguito alcune nozioni di teoria del potenziale e la dimostrazione del criterio nel caso dell’operatore del calore; in questa seconda sezione viene dedicata particolare attenzione alle formule di media e ad una diseguaglianza forte di Harnack, che risultano fondamentali nella trattazione dell’argomento centrale.
Resumo:
Nella tesi viene descritto il Network Diffusion Model, ovvero il modello di A. Ray, A. Kuceyeski, M. Weiner inerente i meccanismi di progressione della demenza senile. In tale modello si approssima l'encefalo sano con una rete cerebrale (ovvero un grafo pesato), si identifica un generale fattore di malattia e se ne analizza la propagazione che avviene secondo meccanismi analoghi a quelli di un'infezione da prioni. La progressione del fattore di malattia e le conseguenze macroscopiche di tale processo(tra cui principalmente l'atrofia corticale) vengono, poi, descritte mediante approccio matematico. I risultati teoretici vengono confrontati con quanto osservato sperimentalmente in pazienti affetti da demenza senile. Nella tesi, inoltre, si fornisce una panoramica sui recenti studi inerenti i processi neurodegenerativi e si costruisce il contesto matematico di riferimento del modello preso in esame. Si presenta una panoramica sui grafi finiti, si introduce l'operatore di Laplace sui grafi e si forniscono stime dall'alto e dal basso per gli autovalori. Al fine di costruire una cornice matematica completa si analizza la relazione tra caso discreto e continuo: viene descritto l'operatore di Laplace-Beltrami sulle varietà riemanniane compatte e vengono fornite stime dall'alto per gli autovalori dell'operatore di Laplace-Beltrami associato a tali varietà a partire dalle stime dall'alto per gli autovalori del laplaciano sui grafi finiti.
Resumo:
This study evaluated the operator variability of different finishing and polishing techniques. After placing 120 composite restorations (Tetric EvoCeram) in plexiglassmolds, the surface of the specimens was roughened in a standardized manner. Twelve operators with different experience levels polished the specimens using the following finishing/polishing procedures: method 1 (40 ?m diamond [40D], 15 ?m diamond [15D], 42 ?m silicon carbide polisher [42S], 6 ?m silicon carbide polisher [6S] and Occlubrush [O]); method 2 (40D, 42S, 6S and O); method 3 (40D, 42S, 6S and PoGo); method 4 (40D, 42S and PoGo) and method 5 (40D, 42S and O). The mean surface roughness (Ra) was measured with a profilometer. Differences between the methods were analyzed with non-parametric ANOVA and pairwise Wilcoxon signed rank tests (?=0.05). All the restorations were qualitatively assessed using SEM. Methods 3 and 4 showed the best polishing results and method 5 demonstrated the poorest. Method 5 was also most dependent on the skills of the operator. Except for method 5, all of the tested procedures reached a clinically acceptable surface polish of Ra?0.2 ?m. Polishing procedures can be simplified without increasing variability between operators and without jeopardizing polishing results.
Resumo:
We calculate the set of O(\alpha_s) corrections to the double differential decay width d\Gamma_{77}/(ds_1 \, ds_2) for the process \bar{B} \to X_s \gamma \gamma originating from diagrams involving the electromagnetic dipole operator O_7. The kinematical variables s_1 and s_2 are defined as s_i=(p_b - q_i)^2/m_b^2, where p_b, q_1, q_2 are the momenta of b-quark and two photons. While the (renormalized) virtual corrections are worked out exactly for a certain range of s_1 and s_2, we retain in the gluon bremsstrahlung process only the leading power w.r.t. the (normalized) hadronic mass s_3=(p_b-q_1-q_2)^2/m_b^2 in the underlying triple differential decay width d\Gamma_{77}/(ds_1 ds_2 ds_3). The double differential decay width, based on this approximation, is free of infrared- and collinear singularities when combining virtual- and bremsstrahlung corrections. The corresponding results are obtained analytically. When retaining all powers in s_3, the sum of virtual- and bremstrahlung corrections contains uncanceled 1/\epsilon singularities (which are due to collinear photon emission from the s-quark) and other concepts, which go beyond perturbation theory, like parton fragmentation functions of a quark or a gluon into a photon, are needed which is beyond the scope of our paper.