856 resultados para Architecture and energy conservation
Resumo:
Since industrialization and the formation of larger urban centers in the nineteenth century, pollution of the environment was always present in daily life in various ways, namely in the form of light. Light pollution can cause various consequences, both for humans and for their ecosystem, producing effects on environmental, social, economic and scientific level. In Portugal, the lighting is responsible for 3% of total electricity consumption, energy costs are in some cases more than 50% towards the costs incurred by municipalities with energy, checking-in recent years a trend similar to that improvement of illumination levels in the region (about 4 to 5% per year). Proper use of lighting brings many benefits both to the citizen and environment, since greater energy efficiency can contribute to reducing CO2 emissions, energy costs, as well as to decrease the use of resources not-renewable and/or contamination of renewable resources, which can occurs in the process of obtaining electricity. The present study has a main goal to analyze the illuminance levels associated to the public lighting of the village of Vialonga, Vila Franca de Xira (Portugal), to verify if it is efficient. The aim is also to relate the efficiency of street lighting with the existence of light pollution.
Resumo:
We have performed Surface Evolver simulations of two-dimensional hexagonal bubble clusters consisting of a central bubble of area lambda surrounded by s shells or layers of bubbles of unit area. Clusters of up to twenty layers have been simulated, with lambda varying between 0.01 and 100. In monodisperse clusters (i.e., for lambda = 1) [M.A. Fortes, F Morgan, M. Fatima Vaz, Philos. Mag. Lett. 87 (2007) 561] both the average pressure of the entire Cluster and the pressure in the central bubble are decreasing functions of s and approach 0.9306 for very large s, which is the pressure in a bubble of an infinite monodisperse honeycomb foam. Here we address the effect of changing the central bubble area lambda. For small lambda the pressure in the central bubble and the average pressure were both found to decrease with s, as in monodisperse clusters. However, for large,, the pressure in the central bubble and the average pressure increase with s. The average pressure of large clusters was found to be independent of lambda and to approach 0.9306 asymptotically. We have also determined the cluster surface energies given by the equation of equilibrium for the total energy in terms of the area and the pressure in each bubble. When the pressures in the bubbles are not available, an approximate equation derived by Vaz et al. [M. Fatima Vaz, M.A. Fortes, F. Graner, Philos. Mag. Lett. 82 (2002) 575] was shown to provide good estimations for the cluster energy provided the bubble area distribution is narrow. This approach does not take cluster topology into account. Using this approximate equation, we find a good correlation between Surface Evolver Simulations and the estimated Values of energies and pressures. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this paper is to present and discuss a general HV topology of the solid-state Marx modulator, for unipolar or bipolar generation connected with a step-up transformer to increase the output voltage applied to a resistive load. Due to the use of an output transformer, discussion about the reset of the transformer is made to guarantee zero average voltage applied to the primary. It is also discussed the transformer magnetizing energy recovering back to the energy storage capacitors. Simulation results for a circuit that generates 100 kV pulses using 1000 V semiconductors are presented and discussed regarding the voltage and current stress on the semiconductors and result obtained.
Resumo:
In a world increasingly conscientious about environmental effects, power and energy systems are undergoing huge transformations. Electric energy produced from power plants is transmitted and distributed to end users through a power grid. The power industry performs the engineering design, installation, operation, and maintenance tasks to provide a high-quality, secure energy supply while accounting for its systems’ abilities to withstand uncertain events, such as weather-related outages. Competitive, deregulated electricity markets and new renewable energy sources, however, have further complicated this already complex infrastructure.Sustainable development has also been a challenge for power systems. Recently, there has been a signifi cant increase in the installation of distributed generations, mainly based on renewable resources such as wind and solar. Integrating these new generation systems leads to more complexity. Indeed, the number of generation sources greatly increases as the grid embraces numerous smaller and distributed resources. In addition, the inherent uncertainties of wind and solar energy lead to technical challenges such as forecasting, scheduling, operation, control, and risk management. In this special issue introductory article, we analyze the key areas in this field that can benefi t most from AI and intelligent systems now and in the future.We also identify new opportunities for cross-fertilization between power systems and energy markets and intelligent systems researchers.
Resumo:
"Conhecer o Mar dos Açores III - Fórum científico de apoio à decisão". Biblioteca Pública e Arquivo Regional João José da Graça, Horta, Faial, Açores, 19-20 de setembro de 2013.
Resumo:
For the past years wireless sensor networks (WSNs) have been coined as one of the most promising technologies for supporting a wide range of applications. However, outside the research community, few are the people who know what they are and what they can offer. Even fewer are the ones that have seen these networks used in real world applications. The main obstacle for the proliferation of these networks is energy, or the lack of it. Even though renewable energy sources are always present in the networks environment, designing devices that can efficiently scavenge that energy in order to sustain the operation of these networks is still an open challenge. Energy scavenging, along with energy efficiency and energy conservation, are the current available means to sustain the operation of these networks, and can all be framed within the broader concept of “Energetic Sustainability”. A comprehensive study of the several issues related to the energetic sustainability of WSNs is presented in this thesis, with a special focus in today’s applicable energy harvesting techniques and devices, and in the energy consumption of commercially available WSN hardware platforms. This work allows the understanding of the different energy concepts involving WSNs and the evaluation of the presented energy harvesting techniques for sustaining wireless sensor nodes. This survey is supported by a novel experimental analysis of the energy consumption of the most widespread commercially available WSN hardware platforms.
Resumo:
The purpose of this study is to analyse the interlimb relation and the influence of mechanical energy on metabolic energy expenditure during gait. In total, 22 subjects were monitored as to electromyographic activity, ground reaction forces and VO2 consumption (metabolic power) during gait. The results demonstrate a moderate negative correlation between the activity of tibialis anterior, biceps femoris and vastus medialis of the trailing limb during the transition between midstance and double support and that of the leading limb during double support for the same muscles, and between these and gastrocnemius medialis and soleus of the trailing limb during double support. Trailing limb soleus during the transition between mid-stance and double support was positively correlated to leading limb tibialis anterior, vastus medialis and biceps femoris during double support. Also, the trailing limb centre of mass mechanical work was strongly influenced by the leading limbs, although only the mechanical power related to forward progression of both limbs was correlated to metabolic power. These findings demonstrate a consistent interlimb relation in terms of electromyographic activity and centre of mass mechanical work, being the relations occurred in the plane of forward progression the more important to gait energy expenditure.
Resumo:
Wireless sensor networks (WSNs) have attracted growing interest in the last decade as an infrastructure to support a diversity of ubiquitous computing and cyber-physical systems. However, most research work has focused on protocols or on specific applications. As a result, there remains a clear lack of effective and usable WSN system architectures that address both functional and non-functional requirements in an integrated fashion. This poster outlines the EMMON system architecture for large-scale, dense, real-time embedded monitoring. It provides a hierarchical communication architecture together with integrated middleware and command and control software. It has been designed to maintain as much as flexibility as possible while meeting specific applications requirements. EMMON has been validated through extensive analytical, simulation and experimental evaluations, including through a 300+ nodes test-bed the largest single-site WSN test-bed in Europe.
Resumo:
Most of small islands around the world today, are dependent on imported fossil fuels for the majority of their energy needs especially for transport activities and electricity production. The use of locally renewable energy resources and the implementation of energy efficiency measures could make a significant contribution to their economic development by reducing fossil fuel imports. An electrification of vehicles has been suggested as a way to both reduce pollutant emissions and increase security of supply of the transportation sector by reducing the dependence on oil products imports and facilitate the accommodation of renewable electricity generation, such as wind and, in the case of volcanic islands like Sao Miguel (Azores) of the geothermal energy whose penetration has been limited by the valley electricity consumption level. In this research, three scenarios of EV penetration were studied and it was verified that, for a 15% LD fleet replacement by EVs with 90% of all energy needs occurring during the night, the accommodation of 10 MW of new geothermal capacity becomes viable. Under this scenario, reductions of 8% in electricity costs, 14% in energy, 23% in fossil fuels use and CO2 emissions for the transportation and electricity production sectors could be expected.
Resumo:
Empowered by virtualisation technology, cloud infrastructures enable the construction of flexi- ble and elastic computing environments, providing an opportunity for energy and resource cost optimisation while enhancing system availability and achieving high performance. A crucial re- quirement for effective consolidation is the ability to efficiently utilise system resources for high- availability computing and energy-efficiency optimisation to reduce operational costs and carbon footprints in the environment. Additionally, failures in highly networked computing systems can negatively impact system performance substantially, prohibiting the system from achieving its initial objectives. In this paper, we propose algorithms to dynamically construct and readjust vir- tual clusters to enable the execution of users’ jobs. Allied with an energy optimising mechanism to detect and mitigate energy inefficiencies, our decision-making algorithms leverage virtuali- sation tools to provide proactive fault-tolerance and energy-efficiency to virtual clusters. We conducted simulations by injecting random synthetic jobs and jobs using the latest version of the Google cloud tracelogs. The results indicate that our strategy improves the work per Joule ratio by approximately 12.9% and the working efficiency by almost 15.9% compared with other state-of-the-art algorithms.
Resumo:
The excavations of the Dericik Early Christian Basilicas revealed the importance of the surrounding area of Bursa for understanding Early Christianity between the Late Roman and Early Byzantine periods. In the salvage excavations of 2001, the basic plan of the basilica (nave, narthex, presbyterium and apse) was revealed. The most important artefacts uncovered in that year were the mosaic pavements with geometric and plant ornaments and a grave located in the North Eastern corner of the church. The mosaic of the basilica was laid with the opus tessellatum technique on a thick mortar foundation with white, red, yellow, olive green and dark blue tesserae. A refrigerium scene is represented in the middle of the narthex mosaic. The mosaic in the centre of the nave is divided into parts, one of which with figures of birds inside octagons. In the transitional area between the nave and apse, three heavily damaged inscriptions have been conserved each of three or four lines, one of them indicating the wish of Epituchanos, diakôn, a church member.
Resumo:
Recensão de: Michelangelo Sabatino, "Pride in Modesty: Modernist Architecture and the Vernacular Tradition in Italy", Toronto: University of Toronto Press, 2011
Resumo:
This paper describes the trigger and offline reconstruction, identification and energy calibration algorithms for hadronic decays of tau leptons employed for the data collected from pp collisions in 2012 with the ATLAS detector at the LHC center-of-mass energy s√ = 8 TeV. The performance of these algorithms is measured in most cases with Z decays to tau leptons using the full 2012 dataset, corresponding to an integrated luminosity of 20.3 fb−1. An uncertainty on the offline reconstructed tau energy scale of 2% to 4%, depending on transverse energy and pseudorapidity, is achieved using two independent methods. The offline tau identification efficiency is measured with a precision of 2.5% for hadronically decaying tau leptons with one associated track, and of 4% for the case of three associated tracks, inclusive in pseudorapidity and for a visible transverse energy greater than 20 GeV. For hadronic tau lepton decays selected by offline algorithms, the tau trigger identification efficiency is measured with a precision of 2% to 8%, depending on the transverse energy. The performance of the tau algorithms, both offline and at the trigger level, is found to be stable with respect to the number of concurrent proton--proton interactions and has supported a variety of physics results using hadronically decaying tau leptons at ATLAS.
Resumo:
Charcoal is an important energy raw material and its properties are influenced by the wood's anatomical and chemical composition and the production process. The aim of this study was to evaluate the anatomical characteristics, calorific power and volatiles and ash content of carbonized wood from Byrsonima spicata, Calophyllum brasiliense, Cecropia sciadophylla, Cochlospermum orinocense and Schefflera morototoni. The calorific power varied from 26,878 to 31,117 kJ kg-1; the content of volatile materials ranged from 20.9 to 31.7%; ash content ranged from 0.1 to 3.8%; and carbon content varied from 68.2 to 75.3%. Anatomical structures of charcoal can be used for species identification. The studied species are not indicated for charcoal production because the levels of ash and volatile compounds are higher than those recommended for charcoal produced for household use. In addition, the calorific power and level of carbon content are insufficient for use in the steel industry.