998 resultados para Aragonite stalagmite
Resumo:
自20世纪60年代以来,探索全球性气候变化规律和环境变迁史的研究工作在世界各国广泛开展。大规模的深海岩芯的研究、中国北方黄土的系统研究、大型湖泊沉积岩芯的研究及对树木年轮、泥炭、珊瑚、冰芯等“自然环境历史档案”开展的研究工作,都为重建古气候和古生态环境提供了大量的资料。洞穴化学沉积物(石笋)由于其特有的微层结构及其内的稳定氧、碳同位素和微量元素所蕴含的古气候与古生态环境信息,并且具有分布广、时间长、信息保存完整等特点,因此,它是研究地球环境变化很好的自然环境历史档案。本论文通过对凉风洞洞穴体系的综合研究和对凉风洞石笋(微层)生长特征及石笋的碳、氧稳定同位素组成的研究,系统探讨了贵州凉风洞石笋的古气候记录和古生态环境意义,得出以下主要结论:1,地表植被的类型及生物量等信息可综合反映于洞穴体系的不同组.分(气样、土样、水样)中。而洞穴的水动力条件也能很好的被洞穴滴水中所含微量(常量)元素记录。根据分析,洞穴综合体系对外界气候与生态环境的响应关系存在一定规律性。通过对比说明,我们所选的凉风洞基岩的溶蚀和缓冲对水体中的信息影响不大,即洞穴滴水较好的继承了土壤水所携带的地表气候与生态环境信息,是理想的研究对象。2.凉风洞石笋具有多个沉积旋回,不同沉积旋回的纹层组合及纹层结构存在一定的差异,指示不同的沉积环境。根据年龄数据判断,旋回①至旋回⑧之间年龄跨度为1570-8000 aBP,以呈缓平顶(柱)对称叠复状的沉积形态组合为主,示洞顶滴水量较大,滴水点相对稳定,且均匀,与全新世较为稳定的气候与环境变化的主旋律相一致。旋回⑧以下至底部石葡萄状沉积物之上部分之间年龄跨度为8000-14220 aBP,期间经历末次冰期晚期向全新世大暖期过渡,受诸如新仙女木事件(Younger Dryas)等的影响,气候变化幅度大,且经历多次反复,石笋生长的沉积学特征表现为斜锥(柱)、尖顶锥不对称叠复纹层组合,示洞顶滴水水量较小但变化较大,且洞穴滴水不稳(固)定。与此时间段内不稳定的气候与环境变化的主旋律也相一致。3.凉风洞石笋上段微层具有典型南方石笋微层发育的特性:微层发育较差,层面多弯曲,层间界面模糊等。下段因为沉积间断较多、风化层面厚及受到若干时段内碳酸钙重结晶而导致晶体穿插层位生长的影响,尽管在某些层位有微层发育,但无法对石笋微层作连续观察记录。根据高精度的石笋TIMS、ICP-MS测年数据和在显微镜下所数石笋微层数量的对比,扣除若干个沉积间断及风化层导致的微层缺失,以及显微镜下肉眼对细小微层计数的误差,我们认为,凉风洞石笋微层是年生长层的可能性较大。4,由于部分测年数据仍在测试中,目前无法精确控制石笋中沉积间断的存在导致的信息缺失,因此,我们仅仅根据部分石笋测年数据,建立了凉风洞石笋在不同时段的生长速率。全新世以来石笋的生长速率在22μm/yr-51μm/yr之间,明显高于末次冰期晚期向全新世过渡这一时间段内的石笋生长速率(16μm/yr)。这些数据间接印证了石笋生长响应于外界气候,尤其是降雨的变化。5.通过对洞穴体系的综合分析对比,我们判断凉风洞洞穴综合体系相对完整,洞穴化学沉积物的6先值较为直接的响应了土壤c压的61t值变化,即反映了地表的植被(c3植物和c;植物)的组成状况。贵州地区降雨80%集中在5-10月份,在此期间,基本受西南季风和东亚季风所控制。西南季风盛行时贵州各地的降雨频繁,是一年中雨量最集中的时期,在东亚季风影响时期,贵州多晴少雨,往往形成干早的天气。又西南季风控制区大气降雨创的值的加权平均值明显低于东亚季风控制区大气降雨δ18O值的加权平均值。因此,贵州地区年均降雨量和年均降雨δ18O值主要取决于西南(印度洋)季风的强弱:西南季风加强,降雨量增加,年均降雨剐、值偏负;西南季风减弱,降雨量减少,年均降雨δ18O值偏正。洞穴滴水的6旧O值变化基本继承了大气降水的别勿值变化。因此,对地处我国西南地区贵州南部的凉风洞,源于洞穴滴水的凉风洞石笋的别勺值变化直接响应了外界的大气降雨量的变化和西南季风与东亚季风相互的强弱交替。6.对凉风洞石笋碳、氧同位素组成的时间序列曲线作20点移动平均,发现,特别是进入全新世后,石笋的引3c值和扩、值几乎具有完全一致的同步变化,只是在变化幅度上在某些时段存在差异。说明在凉风洞石笋反映的14220-1570 aBP时间段内,尤其是10500-1570 aBP期间,本区域气候具有雨热(或干冷)同期的气候特征:在气温较高时间段,西南季风增强,气候湿润多雨,更有利于地表。植物的生长。气温降低时,随着东亚季风增强,西南季风减弱,气候干旱少雨,地表C;植物的生长占有一定的比例。据此重建和恢复了本地区14220-1570 aBP期间的古气候和古生态环境:(1).14220-10500aBP,处于末次冰期晚期,气温较低。凉风洞石笋此时段的司、值都大于-9.8‰,最小值为-9.31‰,最大值达-7.290‰,平均值为-8.552‰。说明凉风洞洞穴地表的生长植被。植物占有一定的组分,石笋的δ18C值受C3植物和C4植物的共同影响。此时段内石笋6、值也存在一定的波动(-5.651‰-6.942‰),考虑到末次冰期晚期先全新世过渡期间气温变幅较大,O'Neil等(1969)所建立的氧同位素平衡分馏方程中的温度变化已不能忽略,并且大气降雨的温度效应作用也比较明显,因此我们对此时段的季风和大气降雨量的变化不作讨论。(2). 10500-9300 aBP,新仙女木事件结束,进入全新世,气温逐渐回升。凉风洞石笋此时段的扩3c值大都小于-9.8‰,最小值为-10.377‰,最大值为-9.267‰,平均值为-9.910‰。凉风洞洞穴地表植被已逐渐由C3植物占主导。此时段石笋δ18C值明显卜降,最小值为-7.420‰,最大值为-6.077‰,平均值为-6.854‰。反映在全新世早期夏季风盛行,降雨量较大,西南季风对本地区全年降雨贡献率大。(3).9300-8300 aBP,经历一段明显温度波动变化。仟3c值在-9.8‰上下波动,最小值为-10.155‰,最大值为-9.096‰,平均值为-9.712‰。凉风洞洞穴地表植被C4植物所占比例存在反复。此时段石笋岁a0值变化幅度不是很大,最小值为-6.796‰,最大值为-6.260‰,平均值为-6.490‰。受冬季风影响,夏季风有一定的减弱,总体降雨量一般,东亚季风对本地区全年降雨贡献率比全新世初期有所增大。(4).8300-3l000BP,俗称全新世大暖期,此时段全球气温明显回升,石笋δ18C值总体逐渐降低,最小值为-n.926编,平均值为-10.496‰。凉风洞洞穴地表植被基本由C3植物所控制。但在扩飞值总体逐渐降低的趋势一F,也存在若干扩3c值明显增大时段,如7700-6700 aBP时段,61七值最大值达-8.110‰,地表C4植物所占比例已不能忽略。此时段石笋6150值变化幅度较大,最小值为-7.373‰,最大值为-5.047‰,平均值为-6.261‰。反映在全新世大暖期的大背景下西南季风和东亚季风的交替以及大气降雨量的变化存在较大的波动,说明了季风气候的不稳定性。(5).3100-1570 aBP,在3100aBP前后,凉风洞石笋的δ18C值和δ18O值均急剧上升,标志进入晚全新世。此时段气温变幅很大,δ18C值总体虽然仍偏低,平均值为-10.275‰,但刻畜介于-6.495-12.097‰之间;δ18C值平均值为-6.184‰,变幅介于-4.677-8.65‰之间,均超过以往任何时段。此时段凉风洞洞穴地表植被基本上仍然由C。植物所控制,始于3100 aBP的急速降温事件使得在全新世晚期开始时段C4植物所占比例有一定的上升。此时段内西南季风和东亚季风反复多次交替,大气降雨量存在较大幅度的变化,说明了季风气候在此时段的很不稳定性。对于169于巧70 oBP百年时间段内石笋的δ18C值和司、值巨大幅度的急剧升高,有待进一步研究,也不排除石笋表层长期裸露受外界污染所致。
Resumo:
The structure, X-ray diffraction and amino acid compositions of the opercular filament cuticle, calcareous opercular plate and habitation tube of the polychaete serpulid, Pomatoceros lamarckii quatrefages, are reported. The opercular filament cuticle is made up of protein and chitin. The chitin is probably in the crystallographic α form. The structure and amino acid composition of the organic components of the opercular filament cuticle and calcareous opercular plate have similarities but are distinctly different from those of the calcareous habitation tube. The opercular plate and habitation tube are composed of different polymorphs of calcium carbonate, aragonite and calcite respectively. Comparisons are made with other chitin-protein systems, structural and calcified proteins.
Resumo:
The increase in atmospheric CO2 is a dual threat to the marine environment: from one side it drives climate change, leading to modifications in water temperature, circulation patterns and stratification intensity; on the other side it causes a decrease in marine pH (ocean acidification, or OA) due to the increase in dissolved CO2. Assessing the combined impact of climate change and OA on marine ecosystems is a challenging task. The response of the ecosystem to a single driver can be highly variable and remains still uncertain; additionally the interaction between these can be either synergistic or antagonistic. In this work we use the coupled oceanographic–ecosystem model POLCOMS-ERSEM driven by climate forcing to study the interaction between climate change and OA. We focus in particular on carbonate chemistry, primary and secondary production. The model has been run in three different configurations in order to assess separately the impacts of climate change on net primary production and of OA on the carbonate chemistry, which have been strongly supported by scientific literature, from the impact of biological feedbacks of OA on the ecosystem, whose uncertainty still has to be well constrained. The global mean of the projected decrease of pH at the end of the century is about 0.27 pH units, but the model shows significant interaction among the drivers and high variability in the temporal and spatial response. As a result of this high variability, critical tipping point can be locally and/or temporally reached: e.g. undersaturation with respect to aragonite is projected to occur in the deeper part of the central North Sea during summer. Impacts of climate change and of OA on primary and secondary production may have similar magnitude, compensating in some area and exacerbating in others.
Resumo:
Ocean acidification has been suggested as a serious threat to the future existence of cold-water corals (CWC). However, there are few fine-scale temporal and spatial datasets of carbonate and nutrients conditions available for these reefs, which can provide a baseline definition of extant conditions. Here we provide observational data from four different sites in the northeast Atlantic that are known habitats for CWC. These habitats differ by depth and by the nature of the coral habitat. At depths where CWC are known to occur across these sites the dissolved inorganic carbon ranged from 2088 to 2186 μmol kg−1, alkalinity ranged from 2299 to 2346 μmol kg−1, and aragonite Ω ranged from 1.35 to 2.44. At two sites fine-scale hydrodynamics caused increased variability in the carbonate and nutrient conditions over daily time-scales. The observed high level of variability must be taken into account when assessing CWC sensitivities to future environmental change.
Resumo:
We present the first remotely operated vehicle investigation of megabenthic communities (1004-1695 m water depth) on the Hebrides Terrace Seamount (Northeast Atlantic). Conductivity-temperature-depth casts showed rapid light attenuation below the summit and an oceanographic regime on the flanks consistent with an internal tide, and high short-term variability in water temperature, salinity, light attenuation, aragonite and oxygen down to 1500 m deep. Minor changes in species composition (3-14%) were explained by changes in depth, substratum and oceanographic stability, whereas environmental variability explained substantially more variation in species richness (40-56%). Two peaks in species richness occurred, the first at 1300-1400 m where cooler Wyville Thomson Overflow Water (WTOW) mixes with subtropical gyre waters and the second at 1500-1600 m where WTOW mixes with subpolar mode waters. Our results suggest that internal tides, substrate heterogeneity and oceanographic interfaces may enhance biological diversity on this and adjacent seamounts in the Rockall Trough.
Resumo:
Received for publication October 31, 2002. Design and operation of Fe0 permeable reactive barriers (PRBs) can be improved by understanding the long-term mineralogical transformations that occur within PRBs. Changes in mineral precipitates, cementation, and corrosion of Fe0 filings within an in situ pilot-scale PRB were examined after the first 30 months of operation and compared with results of a previous study of the PRB conducted 15 months earlier using X-ray diffraction and scanning electron microscopy employing energy dispersive X-ray and backscatter electron analyses. Iron (oxy)hydroxides, aragonite, and maghemite and/or magnetite occurred throughout the cores collected 30 mo after installation. Goethite, lepidocrocite, mackinawite, aragonite, calcite, and siderite were associated with oxidized and cemented areas, while green rusts were detected in more reduced zones. Basic differences from our last detailed investigation include (i) mackinawite crystallized from amorphous FeS, (ii) aragonite transformed into calcite, (iii) akaganeite transformed to goethite and lepidocrocite, (iv) iron (oxy)hydroxides and calcium and iron carbonate minerals increased, (v) cementation was greater in the more recent study, and (vi) oxidation, corrosion, and disintegration of Fe0 filings were greater, especially in cemented areas, in the more recent study. If the degree of corrosion and cementation that was observed from 15 to 30 mo after installation continues, certain portions of the PRB (i.e., up-gradient entrance of the ground water to the Fe0 section of the PRB) may last less than five more years, thus reducing the effectiveness of the PRB to mitigate contaminants. Abbreviations: EDX, energy dispersive X-ray • Fe0, zerovalent iron • PRB, permeable reactive barrier • SEM, scanning electron microscopy • XRD, X-ray diffraction
Resumo:
There is a limited amount of information about the effects of mineral precipitates and corrosion on the lifespan and long-term performance of in situ Fe° reactive barriers. The objectives of this paper are (1) to investigate mineral precipitates through an in situ permeable Fe° reactive barrier and (2) to examine the cementation and corrosion of Fe° filings in order to estimate the lifespan of this barrier. This field scale barrier (225' long x 2' wide x 31' deep) has been installed in order to remove uranium from contaminated groundwater at the Y-12 plant site, Oak Ridge, TN. According to XRD and SEM-EDX analysis of core samples recovered from the Fe° portion of the barrier, iron oxyhydroxides were found throughout, while aragonite, siderite, and FeS occurred predominantly in the shallow portion. Additionally, aragonite and FeS were present in up-gradient deeper zone where groundwater first enters the Fe° section of the barrier. After 15 months in the barrier, most of the Fe° filings in the core samples were loose, and a little corrosion of Fe° filings was observed in most of the barrier. However, larger amounts of corrosion (~10-150 µm thick corrosion rinds) occurred on cemented iron particles where groundwater first enters the barrier. Bicarbonate/ carbonate concentrations were high in this section of the barrier. Byproducts of this corrosion, iron oxyhydroxides, were the primary binding material in the cementation. Also, aragonite acted as a binding material to a lesser extent, while amorphous FeS occurred as coatings and infilings. Thin corrosion rinds (2-50 µm thick) were also found on the uncemented individual Fe° filings in the same area of the cementation. If corrosion continues, the estimated lifespan of Fe° filings in the more corroded sections is 5 to 10 years, while the Fe° filings in the rest of the barrier perhaps would last longer than 15 years. The mineral precipitates on the Fe° filing surfaces may hinder this corrosion but they may also decrease reactive surfaces. This research shows that precipitation will vary across a single reactive barrier and that greater corrosion and subsequent cementation of the filings may occur where groundwater first enters the Fe° section of the barrier.
Resumo:
The sediments of Like Fimon N Italy contain the first continuous archive of the Late Pleistocene environmental and climate history of the southern Alpine foreland We present here the detailed palynological record of the interval between Termination II and the List Glacial Maximum The age-depth model is obtained by radiocarbon dating in the uppermost part of the record Downward we con elated major forest expansion and contraction events to isotopic events in the Greenland Ice core records via a stepping-stone approach involving intermediate correlation to isotopic events dated by TIMS U/Th in Alpine and Apennine stalagmites and to pollen records from mime cores of the Iberian margin Modelled ages obtained by Bayesian analysis of deposition are thoroughly consistent with actual ages with maximum offset of +/- 1700 years Sharp expansion of broad-leaved temperate forest and of sudden water table rise mark the onset of the Last Interglacial after a treeless steppe phase at the end of penultimate glaciation This event is actually a two-step process which matches the two step rise observed in the isotopic record of the nearby Antro del Corchia stalagmite respectively dated to 132 5 +/- 2 5 and 129 +/- 1 5 ka At the interglacial decline mixed oak forests were replaced by oceanic mixed forests the latter persisting further for 7 ka till the end of the Eemian succession Warm-temperate woody species are still abundant at the Eemian end corroborating a steep gradient between central Europe and the Alpine divide at the inception of the last glacial After a stadial phase marked by moderate forest decline a new expansion of warm broad leaved forests interrupted by minor events and followed by mixed oceanic forests can be identified with the north-alpine Saint Germain I The spread of beech during the oceanic phase is a valuable circumalpine marker The subsequent stadial-interstadial succession lacking the telocratic oceanic phase is also consistent with the evidence at the north alpine foreland The Middle Wurmian (full glacial) is marked by persistence of mixed forests dominated by conifers but with significant lime and other broad leaved species A major Arboreal Pollen decrease is observed at modelled age of 38 7 +/- 0 5 ka (larch expansion and last occurrence of lime) which his been related to Heinrich Event 4 The evidence of afforestation persisting south of the Alps throughout most of MIS 3 contrasts with a boreal and continental landscape known for the northern alpine foreland pointing to a sharp rainfall boundary at the Alpine divide and to southern air circulation This is in agreement with the Alpine paleoglaciological record and is supported by the pressure and rainfall patterns designed by mesoscale paleoclimate simulations Strenghtening the continental high pressure during the full glacial triggered cyclogenesis in the middle latitude eastern Europe and orographic rainfall in the eastern Alps and the Balkanic mountains thus allowing forests development at current sea level altitudes (C) 2010 Elsevier Ltd All rights reserved
Resumo:
The precipitation of calcium carbonate in water has been examined using a combination of molecular dynamics and umbrella sampling. During 20 ns molecular dynamics trajectories at elevated calcium carbonate concentrations, amorphous particles are observed to form and appear to be composed of misaligned domains of vaterite and aragonite. The addition of further calcium ions to these clusters is found to be energetically favorable and virtually barrierless. By contrast, there is a large barrier to the addition of calcium to small calcite crystals. Thus, even though calcite nanocrystals are stable in solution, at high supersaturations, particles of amorphous material form because this material grows much faster than ordered calcite nanocrystals.
Resumo:
Drill cores from the inner-alpine valley terrace of Unterangerberg, located in the Eastern Alps of Austria, offer first insights into a Pleistocene sedimentary record that was not accessible so far. The succession comprises diamict, gravel, sand, lignite and thick, fine grained sediments. Additionally, cataclastic deposits originating from two paleo-landslide events are present. Multi-proxy analyses including sedimentological and palynological investigations as well as radiocarbon and luminescence data record the onset of the last glacial period (Wurmian) at Unterangerberg at similar to 120-110 ka. This first time period, correlated to the MIS 5d, was characterised by strong fluvial aggradation under cold climatic conditions, with only sparse vegetation cover. Furthermore, two large and quasi-synchronous landslide events occurred during this time interval. No record of the first Early Wiirmian interstadial (MIS 5c) is preserved. During the second Early Wiirmian interstadial (MIS 5a), the local vegetation was characterised by a boreal forest dominated by Picea, with few thermophilous elements. The subsequent collapse of the vegetation is recorded by sediments dated to similar to 70-60 ka (i.e. MIS 4), with very low pollen concentrations and the potential presence of permafrost. Climatic conditions improved again between similar to 55 and 45 ka (MIS 3) and cold-adapted trees re-appeared during interstadials, forming an open forest vegetation. MIS 3 stadials were shorter and less severe than the MIS 4 at Unterangerberg, and vegetation during these cold phases was mainly composed of shrubs, herbs and grasses, similar to what is known from today's alpine timberline. The Unterangerberg record ended at similar to 45 ka and/or was truncated by ice during the Last Glacial Maximum. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Design and operation of Fe0 permeable reactive barriers (PRBs) can be improved by understanding the long-term mineralogical transformations that occur within PRBs. Changes in mineral precipitates, cementation, and corrosion of Fe0 filings within an in situ pilot-scale PRB were examined after the first 30 months of operation and compared with results of a previous study of the PRB conducted 15 months earlier using X-ray diffraction and scanning electron microscopy employing energy dispersive X-ray and backscatter electron analyses. Iron (oxy)hydroxides, aragonite, and maghemite and/or magnetite occurred throughout the cores collected 30 mo after installation. Goethite, lepidocrocite, mackinawite, aragonite, calcite, and siderite were associated with oxidized and cemented areas, while green rusts were detected in more reduced zones. Basic differences from our last detailed investigation include (i) mackinawite crystallized from amorphous FeS, (ii) aragonite transformed into calcite, (iii) akaganeite transformed to goethite and lepidocrocite, (iv) iron (oxy)hydroxides and calcium and iron carbonate minerals increased, (v) cementation was greater in the more recent study, and (vi) oxidation, corrosion, and disintegration of Fe0 filings were greater, especially in cemented areas, in the more recent study. If the degree of corrosion and cementation that was observed from 15 to 30 mo after installation continues, certain portions of the PRB (i.e., up-gradient entrance of the ground water to the Fe0 section of the PRB) may last less than five more years, thus reducing the effectiveness of the PRB to mitigate contaminants.
Resumo:
Hosted in a wide depression within the Berici Hills (Venetian Plain), outside the maximum extent reached by LGM glaciers, Lake Fimon preserves an almost continuous archive of landscape and climate changes from the penultimate glacial maximum onwards. The stratigraphic succession deposited at the lake bottom has been investigated in three deep cores by means of pollen analysis, petrographic composition, magnetic susceptibility, LOI, and geochronology. Tephra layers have been identified and are currently under study.
Pollen data provide the first continuous vegetation record in northern Italy for the last 150 ky. Terrestrial vegetation varied from interglacial warm-temperate broad leaved to oceanic mixed forests, from boreal conifer forests to open forest-steppes of colder climate. Phases of major forest expansion and reduction have been correlated to isotopic events described in ice (NGRIP), stalagmite (Antro del Corchia) and marine records. Persistent afforestation recorded in northern Italy even during cold phases of the full pleniglacial is consistent with mesoscale paleoclimate simulations suggesting that a sharp rainfall gradient across the Alps enabled the survival of woody species in the southern alpine foreland.
Integrating litho- and biostratigraphical data, we identified sedimentation regìmes, accumulation rates, sediment sources and supply both for the Lake Fimon cores and the adjacent Venetian Plain, allowing a direct comparison with major glacial advances in the Alpine area, deglaciation pulses, and glacio-eustatic displacements of the northern Adriatic shoreline.
Resumo:
Methane-derived authigenic carbonate (MDAC) mound features at the Codling Fault Zone (CFZ), located in shallow waters (50-120m) of the western Irish Sea were investigated and provide a comparison to deep sea MDAC settings. Carbonates consisted of aragonite as the major mineral phase, with δ13C depletion to -50‰ and δ18O enrichment to~2‰. These isotope signatures, together with the co-precipitation of framboidal pyrite confirm that anaerobic oxidation of methane (AOM) is an important process mediating methane release to the water column and the atmosphere in this region. 18O-enrichment could be a result of MDAC precipitation with seawater in colder than present day conditions, or precipitation with 18O-enriched water transported from deep petroleum sources. The 13C depletion of bulk carbonate and sampled gas (-70‰) suggests a biogenic source, but significant mixing of thermogenic gas and depletion of the original isotope signature cannot be ruled out. Active seepage was recorded from one mound and together with extensive areas of reduced sediment, confirms that seepage is ongoing. The mounds appear to be composed of stacked pavements that are largely covered by sand and extensively eroded. The CFZ mounds are colonized by abundant Sabellaria polychaetes and possible Nemertesia hydroids, which benefit indirectly from available hard substrate. In contrast to deep sea MDAC settings where seep-related macrofauna are commonly reported, seep-specialist fauna appear to be lacking at the CFZ. In addition, unlike MDAC in deep waters where organic carbon input from photosynthesis is limited, lipid biomarkers and isotope signatures related to marine planktonic production (e.g. sterols, alkanols) were most abundant. Evidence for microbes involved in AOM was limited from samples taken; possibly due to this dilution effect from organic matter derived from the photic zone, and will require further investigation.
Resumo:
Dissertação de mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
A regional geochemical reconnaissance by bottom stream sediment sampling, has delineated an area of high metal content in the north central sector of the North Creek Watershed. Development of a geochemical model, relating to the relative chemical concentrations derived from the chemical analyses of bottom sediments, suspended sediments, stream waters and well waters collected from the north central sector, was designed to discover the source of the anomaly. Samples of each type of material were analysed by the A.R.L. Direct Reading Multi-element Emission Spectrograph Q.A. 137 for elements: Na, K, Ca, Sr, Si, As, Pb, Zn, Cd, Ni, Ti, Ag, Mo, Be, Fe, AI, Mn, Cu, Cr, P and Y. Anomalous results led to the discovery of a spring, the waters of which carried high concentrations of Zn, Cd, Pb, As, Ni, Ti, Ag, Sr and Si. In addition, the spring waters had high concentrations of Na, Ca, Mg, 504 , alkalinity, N03' and low concentrations of K, Cl and NH3. Increased specific conductivity (up to 2500 ~mho/cm.) was noted in the spring waters as well as increased calculated total dissolved solids (up to 2047 mg/l) and increased ionic strength (up to 0.06). On the other hand, decreases were noted in water temperature (8°C), pH (pH 7.2) and Eh (+.154 volts). Piezometer nests were installed in the anomalous north central sector of the watershed. In accordance with the slope of the piezometric surface from wells cased down to the till/bedrock interface, groundwater flow is directed from the recharge area (northwest of the anomaly) towards the artesian spring via the highly fractured dolostone aquifer of the Upper Eramosa Member. The bedrock aquifer is confined by the overlying Halton till and the underlying Lower Eramosa Member (Vinemount Shale). The oxidation of sphalerite and galena and the dissolution of gypsum, celestite, calcite, and dolomite within the Eramosa Member, contributed its highly, dissolved constituents to the circulating groundwaters, the age of which is greater than 20 years as determined by tritium dating. Groundwater is assumed to flow along the Vinemount Shale and discharge as an artesian spring where the shale unit becomes discontinuous. The anomaly is located on a topographic low where bedrock is close to the surface. Thermodynamic evaluation of the major ion speciation from the anomalous spring and surface waters, showed gypsum to be supersaturated in these spring waters. Downstream from the spring, the loss of carbon dioxide from the spring waters resulted in the supersaturation with respect to calcite, aragonite, magnesite and dolomite. This corresponded with increases in Eh (+.304 volts) and pH (pH 8.5) in the anomalous surface waters. In conclusion, the interaction of groundwaters within the highly, mineralized carbonate source (Eramosa Member) resulted in the characteristic Ca*Mg*HC03*S04 spring water at the anomalous site, which appeared to be the principle effect upon controlling the anomalous surface water chemistry.