982 resultados para Appearing White-matter
Resumo:
Disconnectivity between the Default Mode Network (DMN) nodes can cause clinical symptoms and cognitive deficits in Alzheimer׳s disease (AD). We aimed to examine the structural connectivity between DMN nodes, to verify the extent in which white matter disconnection affects cognitive performance. MRI data of 76 subjects (25 mild AD, 21 amnestic Mild Cognitive Impairment subjects and 30 controls) were acquired on a 3.0T scanner. ExploreDTI software (fractional Anisotropy threshold=0.25 and the angular threshold=60°) calculated axial, radial, and mean diffusivities, fractional anisotropy and streamline count. AD patients showed lower fractional anisotropy (P=0.01) and streamline count (P=0.029), and higher radial diffusivity (P=0.014) than controls in the cingulum. After correction for white matter atrophy, only fractional anisotropy and radial diffusivity remained significantly lower in AD compared to controls (P=0.003 and P=0.05). In the parahippocampal bundle, AD patients had lower mean and radial diffusivities (P=0.048 and P=0.013) compared to controls, from which only radial diffusivity survived for white matter adjustment (P=0.05). Regression models revealed that cognitive performance is also accounted for by white matter microstructural values. Structural connectivity within the DMN is important to the execution of high-complexity tasks, probably due to its relevant role in the integration of the network.
Resumo:
Spider venoms contain neurotoxic peptides aimed at paralyzing prey or for defense against predators; that is why they represent valuable tools for studies in neuroscience field. The present study aimed at identifying the process of internalization that occurs during the increased trafficking of vesicles caused by Phoneutria nigriventer spider venom (PNV)-induced blood-brain barrier (BBB) breakdown. Herein, we found that caveolin-1α is up-regulated in the cerebellar capillaries and Purkinje neurons of PNV-administered P14 (neonate) and 8- to 10-week-old (adult) rats. The white matter and granular layers were regions where caveolin-1α showed major upregulation. The variable age played a role in this effect. Caveolin-1 is the central protein that controls caveolae formation. Caveolar-specialized cholesterol- and sphingolipid-rich membrane sub-domains are involved in endocytosis, transcytosis, mechano-sensing, synapse formation and stabilization, signal transduction, intercellular communication, apoptosis, and various signaling events, including those related to calcium handling. PNV is extremely rich in neurotoxic peptides that affect glutamate handling and interferes with ion channels physiology. We suggest that the PNV-induced BBB opening is associated with a high expression of caveolae frame-forming caveolin-1α, and therefore in the process of internalization and enhanced transcytosis. Caveolin-1α up-regulation in Purkinje neurons could be related to a way of neurons to preserve, restore, and enhance function following PNV-induced excitotoxicity. The findings disclose interesting perspectives for further molecular studies of the interaction between PNV and caveolar specialized membrane domains. It proves PNV to be excellent tool for studies of transcytosis, the most common form of BBB-enhanced permeability.
Resumo:
Clozapine displays stronger systemic metabolic side effects than haloperidol and it has been hypothesized that therapeutic antipsychotic and adverse metabolic effects of these drugs are related. Considering that cerebral disconnectivity through oligodendrocyte dysfunction has been implicated in schizophrenia, it is important to determine the effect of these drugs on oligodendrocyte energy metabolism and myelin lipid production. Effects of clozapine and haloperidol on glucose and myelin lipid metabolism were evaluated and compared in cultured OLN-93 oligodendrocytes. First, glycolytic activity was assessed by measurement of extra- and intracellular glucose and lactate levels. Next, the expression of glucose (GLUT) and monocarboxylate (MCT) transporters was determined after 6 and 24 h. And finally mitochondrial respiration, acetyl-CoA carboxylase, free fatty acids, and expression of the myelin lipid galactocerebroside were analyzed. Both drugs altered oligodendrocyte glucose metabolism, but in opposite directions. Clozapine improved the glucose uptake, production and release of lactate, without altering GLUT and MCT. In contrast, haloperidol led to higher extracellular levels of glucose and lower levels of lactate, suggesting reduced glycolysis. Antipsychotics did not alter significantly the number of functionally intact mitochondria, but clozapine enhanced the efficacy of oxidative phosphorylation and expression of galactocerebroside. Our findings support the superior impact of clozapine on white matter integrity in schizophrenia as previously observed, suggesting that this drug improves the energy supply and myelin lipid synthesis in oligodendrocytes. Characterizing the underlying signal transduction pathways may pave the way for novel oligodendrocyte-directed schizophrenia therapies.
Resumo:
Multiple sclerosis, which is the most common cause of chronic neurological disability in young adults, is an inflammatory, demyelinating, and neurodegenerative disease of the CNS, which leads to the formation of multiple foci of demyelinated lesions in the white matter. The diagnosis is based currently on magnetic resonance image and evidence of dissemination in time and space. However, this could be facilitated if biomarkers were available to rule out other disorders with similar symptoms as well as to avoid cerebrospinal fluid analysis, which requires an invasive collection. Additionally, the molecular mechanisms of the disease are not completely elucidated, especially those related to the neurodegenerative aspects of the disease. The identification of biomarker candidates and molecular mechanisms of multiple sclerosis may be approached by proteomics. In the last 10 years, proteomic techniques have been applied in different biological samples (CNS tissue, cerebrospinal fluid, and blood) from multiple sclerosis patients and in its experimental model. In this review, we summarize these data, presenting their value to the current knowledge of the disease mechanisms, as well as their importance in identifying biomarkers or treatment targets.
Resumo:
Mutations in the SPG4 gene (SPG4-HSP) are the most frequent cause of hereditary spastic paraplegia, but the extent of the neurodegeneration related to the disease is not yet known. Therefore, our objective is to identify regions of the central nervous system damaged in patients with SPG4-HSP using a multi-modal neuroimaging approach. In addition, we aimed to identify possible clinical correlates of such damage. Eleven patients (mean age 46.0 ± 15.0 years, 8 men) with molecular confirmation of hereditary spastic paraplegia, and 23 matched healthy controls (mean age 51.4 ± 14.1years, 17 men) underwent MRI scans in a 3T scanner. We used 3D T1 images to perform volumetric measurements of the brain and spinal cord. We then performed tract-based spatial statistics and tractography analyses of diffusion tensor images to assess microstructural integrity of white matter tracts. Disease severity was quantified with the Spastic Paraplegia Rating Scale. Correlations were then carried out between MRI metrics and clinical data. Volumetric analyses did not identify macroscopic abnormalities in the brain of hereditary spastic paraplegia patients. In contrast, we found extensive fractional anisotropy reduction in the corticospinal tracts, cingulate gyri and splenium of the corpus callosum. Spinal cord morphometry identified atrophy without flattening in the group of patients with hereditary spastic paraplegia. Fractional anisotropy of the corpus callosum and pyramidal tracts did correlate with disease severity. Hereditary spastic paraplegia is characterized by relative sparing of the cortical mantle and remarkable damage to the distal portions of the corticospinal tracts, extending into the spinal cord.
Resumo:
The pathological mechanisms underlying cognitive dysfunction in multiple sclerosis (MS) are not yet fully understood and, in addition to demyelinating lesions and gray-matter atrophy, subclinical disease activity may play a role. To evaluate the contribution of asymptomatic gadolinium-enhancing lesions to cognitive dysfunction along with gray-matter damage and callosal atrophy in relapsing-remitting MS (RRMS) patients. Forty-two treated RRMS and 30 controls were evaluated. MRI (3T) variables of interest were brain white-matter and cortical lesion load, cortical and deep gray-matter volumes, corpus callosum volume and presence of gadolinium-enhancing lesions. Outcome variables included EDSS, MS Functional Composite (MSFC) subtests and the Brief Repeatable Battery of Neuropsychological tests. Cognitive dysfunction was classified as deficits in two or more cognitive subtests. Multivariate regression analyses assessed the contribution of MRI metrics to outcomes. Patients with cognitive impairment (45.2%) had more cortical lesions and lower gray-matter and callosal volumes. Patients with subclinical MRI activity (15%) had worse cognitive performance. Clinical disability on MSFC was mainly associated with putaminal atrophy. The main independent predictors for cognitive deficits were high burden of cortical lesions and number of gadolinium-enhancing lesions. Cognitive dysfunction was especially related to high burden of cortical lesions and subclinical disease activity. Cognitive studies in MS should look over subclinical disease activity as a potential contributor to cognitive impairment.
Resumo:
Traumatic brain injury (TBI) produces several cellular changes, such as gliosis, axonal and dendritic plasticity, and inhibition-excitation imbalance, as well as cell death, which can initiate epileptogenesis. It has been demonstrated that dysfunction of the inhibitory components of the cerebral cortex after injury may cause status epilepticus in experimental models; we proposed to analyze the response of cortical interneurons and astrocytes after TBI in humans. Twelve contusion samples were evaluated, identifying the expression of glial fibrillary acidic protein (GFAP) and calcium-binding proteins (CaBPs). The study was made in sectors with and without preserved cytoarchitecture evaluated with NeuN immunoreactivity (IR). In sectors with total loss of NeuN-IR the results showed a remarkable loss of CaBP-IR both in neuropil and somata. In sectors with conserved cytoarchitecture less drastic changes in CaBP-IR were detected. These changes include a decrease in the amount of parvalbumin (PV-IR) neurons in layer II, an increase of calbindin (CB-IR) neurons in layers III and V, and an increase in calretinin (CR-IR) neurons in layer II. We also observed glial fibrillary acidic protein immunoreactivity (GFAP-IR) in the white matter, in the gray-white matter transition, and around the sectors with NeuN-IR total loss. These findings may reflect dynamic activity as a consequence of the lesion that is associated with changes in the excitatory circuits of neighboring hyperactivated glutamatergic neurons, possibly due to the primary impact, or secondary events such as hypoxia-ischemia. Temporal evolution of these changes may be the substrate linking severe cortical contusion and the resulting epileptogenic activity observed in some patients.
Resumo:
Cadherins are cell-to-cell adhesion molecules that play an important role in the establishment of adherent-type junctions by mediating calcium-dependent cellular interactions. The CDH1 gene encodes the transmembrane glycoprotein E-cadherin which is important in maintaining homophilic cell-cell adhesion in epithelial tissues. E-cadherin interacts with catenin proteins to maintain tissue architecture. Structural defects or loss of expression of E-cadherin have been reported as a common feature in several human cancer types. This study aimed to evaluate the expression of E-cadherin and their correlation with clinical features in microdissected brain tumor samples from 81 patients, divided into 62 astrocytic tumors grades I to IV and 19 medulloblastomas, and from 5 white matter non-neoplasic brain tissue samples. E-cadherin (CDH1) gene expression was analyzed by quantitative real-time polymerase chain reaction. Mann-Whitney, Kruskal-Wallis, Kaplan-Meir, and log-rank tests were performed for statistical analyses. We observed a decrease in expression among pathological grades of neuroepithelial tumors. Non-neoplasic brain tissue showed a higher expression level of CDH1 gene than did neuroepithelial tumors. Expression of E-cadherin gene was higher in astrocytic than embryonal tumors (P = 0.0168). Low-grade malignancy astrocytomas (grades I-II) showed higher CDH1 expression than did high-grade malignancy astrocytomas (grades III-IV) and medulloblastomas (P < 0.0001). Non-neoplasic brain tissue showed a higher expression level of CDH1 gene than grade I malignancy astrocytomas, considered as benign tumors (P = 0.0473). These results suggest that a decrease in E-cadherin gene expression level in high-grade neuroepithelial tumors may be a hallmark of malignancy in dedifferentiated tumors and that it may be possibly correlated with their progression and dissemination.
Resumo:
Secondary neurodegeneration takes place in the surrounding tissue of spinal cord trauma and modifies substantially the prognosis, considering the small diameter of its transversal axis. We analyzed neuronal and glial responses in rat spinal cord after different degree of contusion promoted by the NYU Impactor. Rats were submitted to vertebrae laminectomy and received moderate or severe contusions. Control animals were sham operated. After 7 and 30 days post surgery, stereological analysis of Nissl staining cellular profiles showed a time progression of the lesion volume after moderate injury, but not after severe injury. The number of neurons was not altered cranial to injury. However, same degree of diminution was seen in the caudal cord 30 days after both severe and moderate injuries. Microdensitometric image analysis demonstrated a microglial reaction in the white matter 30 days after a moderate contusion and showed a widespread astroglial reaction in the white and gray matters 7 days after both severities. Astroglial activation lasted close to lesion and in areas related to Wallerian degeneration. Data showed a more protracted secondary degeneration in rat spinal cord after mild contusion, which offered an opportunity for neuroprotective approaches. Temporal and regional glial responses corroborated to diverse glial cell function in lesioned spinal cord. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) leading to demyelination, axonal damage, and progressive neurologic disability. The development of MS is influenced by environmental factors, particularly the Epstein-Barr virus (EBV), and genetic factors, which include specific HLA types, particularly DRB1*1501-DQA1*0102-DQB1*0602, and a predisposition to autoimmunity in general. MS patients have increased circulating T-cell and antibody reactivity to myelin proteins and gangliosides. It is proposed that the role of EBV is to infect autoreactive B cells that then seed the CNS and promote the survival of autoreactive T cells there. It is also proposed that the clinical attacks of relapsing-remitting MS are orchestrated by myelin-reactive T cells entering the white matter of the CNS from the blood, and that the progressive disability in primary and secondary progressive MS is caused by the action of autoantibodies produced in the CNS by meningeal lymphoid follicles with germinal centers.
Resumo:
Previously we described activating mutations of h beta(c), the common signaling subunit of the receptors for the hematopoietic and inflammatory cytokines, GM-CSF, IL-3, and IL-5. The activated mutant, h beta(c)FI Delta, is able to confer growth factor-independent proliferation on the murine myeloid cell line FDC-P1, and on primary committed myeloid progenitors. We have used this activating mutation to study the effects of chronic cytokine receptor stimulation. Transgenic mice were produced carrying the h beta(c)FI Delta cDNA linked to the constitutive promoter derived from the phosphoglycerate kinase gene, PGK-1. Transgene expression was demonstrated in several tissues and functional activity of the mutant receptor was confirmed in hematopoietic tissues by the presence of granulocyte macrophage and macrophage colony-forming cells (CFU-GM and CFU-M) in the absence of added cytokines. All transgenic mice display a myeloproliferative disorder characterized by splenomegaly, erythrocytosis, and granulocytic and megakaryocytic hyperplasia. This disorder resembles the human disease polycythemia vera, suggesting that activating mutations in h beta(c) may play a role in the pathogenesis of this myeloproliferative disorder. In addition, these transgenic mice develop a sporadic, progressive neurological disease and display bilateral, symmetrical foci of necrosis in the white matter of brain stem associated with an accumulation of macrophages. Thus, chronic h beta(c) activation has the potential to contribute to pathological events in the central nervous system.
Resumo:
OBJECTIVE. Toxic leukoencephalopathy may present acutely or subacutely with symmetrically reduced diffusion in the periventricular and supraventricular white matter, hereafter referred to as periventricular white matter. This entity may reverse both on imaging and clinically. However, a gathering together of the heterogeneous causes of this disorder as seen on MRI with diffusion-weighted imaging (DWI) and an analysis of their likelihood to reverse has not yet been performed. Our goals were to gather causes of acute or subacute toxic leukoencephalopathy that can present with reduced diffusion of periventricular white matter in order to promote recognition of this entity, to evaluate whether DWI with apparent diffusion coefficient (ADC) values can predict the extent of chronic FLAIR abnormality ( imaging reversibility), and to evaluate whether DWI can predict the clinical outcome ( clinical reversibility). MATERIALS AND METHODS. Two neuroradiologists retrospectively reviewed the MRI examinations of 39 patients with acute symptoms and reduced diffusion of periventricular white matter. The reviewers then scored the extent of abnormality on DWI and FLAIR. ADC ratios of affected white matter versus the unaffected periventricular white matter were obtained. Each patient`s clinical records were reviewed to determine the cause and clinical outcome. Histology findings were available in three patients. Correlations were calculated between the initial MRI markers and both the clinical course and the follow-up extent on FLAIR using Spearman`s correlation coefficient. RESULTS. Of the initial 39 patients, seven were excluded because of a nontoxic cause (hypoxic-ischemic encephalopathy [HIE] or congenital genetic disorders) or because of technical errors. In the remaining 32 patients, no correlation was noted between any of the initial MRI markers (percentage of ADC reduction, DWI extent, or FLAIR extent) with the clinical outcome. Three patients had histologic correlation. However, moderate correlation was seen between the extent of abnormality on initial FLAIR and the extent on follow-up FLAIR (r = 0.441, p = 0.047). Of the 13 patients who underwent repeat MRI at 21 days or longer, the reduced diffusion resolved in all but one. Significant differences were noted between ADC values in affected white matter versus unaffected periventricular white matter on initial (p < 0.0001) but not on follow-up MRI (p = 0.13), and in affected white matter on initial versus follow-up (p = 0.0014) in those individuals who underwent repeat imaging on the same magnet (n = 9), confirming resolution of the DWI abnormalities. CONCLUSION. Acute toxic leukoencephalopathy with reduced diffusion may be clinically reversible and radiologically reversible on DWI, and may also be reversible, but to a lesser degree, on FLAIR MRI. None of the imaging markers measured in this study appears to correlate with clinical outcome, which underscores the necessity for prompt recognition of this entity. Alerting the clinician to this potentially reversible syndrome can facilitate treatment and removal of the offending agent in the early stages.
Resumo:
Purpose: To define the role of magnetization transfer imaging (MTI) in detecting subclinical central nervous system (CNS) lesions in primary antiphospholipid syndrome (PAPS). Materials and Methods: Ten non-CNS PAPS patients were compared to 10 CNS PAPS patients and 10 age- and sex-matched controls. All PAPS patients met Sapporo criteria. All Subjects underwent conventional MRI and complementary MTI analysis to compose histograms. CNS viability was determined according to the magnetization transfer ratio (MTR) by mean pixel intensity (MPI) and the mean peak height (MPH). Volumetric cerebral measurements were assessed by brain parenchyma factor (BPF) and total/cerebral volume. Results: MTR histograms analysis revealed that MPI was significantly different among groups (P < 0.0001). Non-CNS PAPS had a higher MPI than CNS PAPS, (30.5 +/- 1.01 vs. 25.1 +/- 3.17 percent unit (pu); P < 0.05) although lower than controls (30.5 +/- 1.01 vs. 31.20 < 0.50 pu; P < 0.05). MPH in non-CNS PAPS (5.57 +/- 0.20% (1/pu)} was similar to controls (5.63 +/- 0.20% (1/pu), P > 0.05) and higher than CNS PAPS (4.71 +/- 0.30% (1/pu), P < 0.05). A higher peak location (PL) was also observed in the CNS PAPS group in comparison with the other groups (P < 0.0001). In addition, a lower BPF was found in non-CNS PAPS compared to controls (0.80 +/- 0.03 vs. 0.84 +/- 0.02 units; P < 0.05) but similar to CNS PAPS (0.80 +/- 0.03 vs. 0.79 +/- 0.05 units; P > 0.05). Conclusion: Our findings suggest that non-CNS PAPS patients have subclinical cerebral damage. The long-term-clinical relevance of MTI analysis in these patients needs to be defined by prospective studies.
Resumo:
The present study aimed to investigate the presence of corpus callosum (CC) volume deficits in a population-based recent-onset psychosis (ROP) sample, and whether CC volume relates to interhemispheric communication deficits. For this purpose, we used voxel-based morphometry comparisons of magnetic resonance imaging data between ROP (n = 122) and healthy control (n = 94) subjects. Subgroups (38 ROP and 39 controls) were investigated for correlations between CC volumes and performance on the Crossed Finger Localization Test (CFLT). Significant CC volume reductions in ROP subjects versus controls emerged after excluding substance misuse and non-right-handedness. CC reductions retained significance in the schizophrenia subgroup but not in affective psychoses subjects. There were significant positive correlations between CC volumes and CFLT scores in ROP subjects, specifically in subtasks involving interhemispheric communication. From these results, we can conclude that CC volume reductions are present in association with ROP. The relationship between such deficits and CFLT performance suggests that interhemispheric communication impairments are directly linked to CC abnormalities in ROP. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The histopathological counterpart of white matter hyperintensities is a matter of debate. Methodological and ethical limitations have prevented this question to be elucidated. We want to introduce a protocol applying state-of-the-art methods in order to solve fundamental questions regarding the neuroimaging-neuropathological uncertainties comprising the most common white matter hyperintensities [WMHs] seen in aging. By this protocol, the correlation between signal features in in situ, post mortem MRI-derived methods, including DTI and MTR and quantitative and qualitative histopathology can be investigated. We are mainly interested in determining the precise neuroanatomical substrate of incipient WMHs. A major issue in this protocol is the exact co-registration of small lesion in a tridimensional coordinate system that compensates tissue deformations after histological processing. The protocol is based on four principles: post mortem MRI in situ performed in a short post mortem interval, minimal brain deformation during processing, thick serial histological sections and computer-assisted 3D reconstruction of the histological sections. This protocol will greatly facilitate a systematic study of the location, pathogenesis, clinical impact, prognosis and prevention of WMHs. (C) 2009 Elsevier B.V. All rights reserved.