972 resultados para Antimicrobial Properties
Resumo:
The adsorption behavior of the Tet-124 antimicrobial peptide and the Tet-124 peptide modified at the C- and N-terminus with the sequence glycine-3,4-dihydroxyphenylalanine-glycine (G-DOPA-G) on titanium surfaces was studied using quartz crystal micro balance with dissipation (QCM-D). At a low pH level (4.75) Tet-124 and Tet-124-G-DOPA-G form rigid layers. This is attributed to the electrostatic interactions of the positively charged lysine and arginine residues in the peptide sequence with the negatively charged titanium oxide layer. At an elevated pH level (6.9) Tet-124 shows a lower mass adsorption at the surface than Tet-124-G-DOPA-G. This is attributed to the interaction of the catechol due to the formation of complexes with the titanium oxide and titanium surface layer. The C terminal and N terminal modification with the sequence G-DOPA-G shows similar adsorption rate and mass adsorption coverage at saturation; however it is presented a more loosely layers on the G-DOPA-G-TeT-124. Fibroblast adhesion and the biocompatibility test of both the surfaces following modification with Tet-124-G-DOPA-G and the titanium alloy control showed similar results. In addition, no changes in the adhesion of E. coli bacteria due to the modification of the surface were detected.
Resumo:
The effects of dielectric barrier discharge plasma treatment on zein film containing thymol as an active ingredient were evaluated. The plasma discharge was optically characterized to identify the reactive species. A significant increase in the film roughness (p < 0.05) was observed due to the etching effect of DBD plasma, which was correlated with the increase in the diffusion rate of thymol in the food simulant. The diffusion of thymol from the zein film was measured in aqueous solution. The kinetics of thymol release followed the Fick’s law of diffusion as shown by the high correlation coefficients between experimental and theoretical data. No significant change (p > 0.05) was observed for the thermal properties of the antimicrobial films after DBD plasma treatment.
Resumo:
Wild mushrooms are mainly collected during the rainy season and valued as a nutritious food and sources of natural medicines and nutraceuticals. The aim of this study was to determine the chemical composition and bioactive properties (antioxidant, antimicrobial and cytotoxicity) of Polyporus squamosus from two different origins, Portugal and Serbia. The sample from Portugal showed higher contents of as protein (17.14 g/100 g), fat (2.69 g/100 g), ash (3.15 g/100 g) and carbohydrates (77.02 g/100 g); the same sample gave the highest antioxidant activity: highest reducing power, DPPH radical scavenging activity, and lipid peroxidation inhibition in both β-carotene/linoleate and TBARS assay. These results could be related to its higher content in total tocopherols (1968.65 μg/100 g) and phenolic compounds (1.29 mg/100 g). Both extracts exhibited antibacterial activity against all the tested organisms. The samples from Serbia gave higher overall antibacterial activity and showed excellent antibiofilm activity (88.30 %). Overall, P. squamosus methanolic extracts possessed antioxidant, antimicrobial, antibiofilm and anti-quorum sensing activity, and without toxicity for liver cells. This investigation highlights alternatives to be explored for the treatment of bacterial infections, in particular against Pseudomonas aeruginosa. This study provides important results for the chemical and bioactive properties, especially antimicrobial activity of the mushroom P. squamosus. Moreover, to the authors’ knowledge this is the first report on sugars, organic acids, and individual phenolic compounds in P. squamosus.
Resumo:
Aim: To assess the effect of adding zinc oxide nanoparticles to dental adhesives on their anti-microbial and bond strength properties. Methods: 45 human premolars were cut at the cement enamel junction (CEJ) and the crowns were sliced into buccal and lingual halves. The specimens were classified into three groups, etched with 37% phosphoric acid for 15 s and rinsed for 30 s. Single Bond, Single Bond+5% zinc oxide and Single Bond+10% zinc oxide were used in the first, second and third groups. A cylinder of Z250 composite was bonded and cured for 40 s. For anti-bacterial testing, 10 samples of each group were assessed by direct contact test; 10 μL of bacterial suspension was transferred into tubes containing adhesives and incubated for one hour; 300 μL of brain heart infusion (BHI) broth was added to each tube and after 12 h, 50 μL of bacteria and broth were spread on blood agar plates and incubated for 24 h. Results: The colony count decreased significantly in the second and third groups compared to the first. Conclusions: Incorporation of zinc oxide nanoparticles into dental adhesives increases their anti-microbial properties without affecting their bond strength.
Resumo:
This research introduces a novel dressing for burn wounds, containing silver nanoparticles in hydrogels for infected burn care. The 2-acrylamido-2-methylpropane sulfonic acid sodium salt hydrogels containing silver nanoparticles have been prepared via ultraviolet radiation. The formation of silver nanoparticles was monitored by surface plasmon bands and transmission electron microscopy. The concentration of silver nitrate loaded in the solutions slightly affected the physical properties and mechanical properties of the neat hydrogel. An indirect cytotoxicity study found that none of the hydrogels were toxic to tested cell lines. The measurement of cumulative release of silver indicated that 70%–82% of silver was released within 72 hr. The antibacterial activities of the hydrogels against common burn pathogens were studied and the results showed that 5 mM silver hydrogel had the greatest inhibitory activity. The results support its use as a potential burn wound dressing.
Resumo:
Plasma polymerisation was used to deposit thin oligomeric films of terpinen-4-ol on a range of substrates. The coatings were examined in terms of their chemical properties and surface architecture to ascertain the changes in chemical composition as a result of exposure to the plasma field. The antifouling and antimicrobial activity of oligomeric terpinen-4-ol coatings were then examined against such human pathogens as Staphylococcus aureus, Pseudomonas aeruginosa and Staphylococcus epidermis. The bacterial adhesion patterns were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM) and confocal scanning laser microscopy (CSLM).
Resumo:
Terpinen-4-ol is the main constituent of Melaleuca alternifolia essential oil known for its biocidal and anti-inflammatory properties. The possibility of fabricating polymer thin films from terpinen-4-ol using radio frequency (RF) plasma polymerisation for the prevention of the growth of Pseudomonas aeruginosa was investigated, and the properties of the resultant films compared against their biologically active precursor. Films fabricated at 10 W prevented bacterial attachment and EPS secretion, whilst polyterpenol films deposited at 25 W demonstrated no biocidal activity against the pathogen.
Resumo:
The transition metal complexes of salicylhydrazone of anthranilhydrazide (H2L) were synthesised. The structures of metal complexes were characterized by various spectroscopic [IR, NMR, UV-Vis, EPR], thermal and other physicochemical methods. The single-crystal X-ray diffraction study of [Cu(HL)Cl]center dot H2O reveal its orthorhombic system with space group P2(1)2(1)2 and Z=4. The copper center has a distorted square planar geometry with ONO and Cl as the donor atoms. The ligand and its metal chelates have been screened for their antimicrobial and anti-tubercular activities using serial dilution method. Metal complexes in general have exhibited better antibacterial and antifungal activity than the free ligand and in few cases better than the standard used. Among the bacterial strains used, the complexes are highly potent against Gram-positive strains compared to Gram-negative. Anti-tubercular activity exhibited by the Co(II) complex is comparable with the standard used. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Typhoidal and non-typhoidal infection by Salmonella is a serious threat to human health. Ciprofloxacin is the last drug of choice to clear the infection. Ciprofloxacin, a gyrase inhibitor, kills bacteria by inducing chromosome fragmentation, SOS response and reactive oxygen species (ROS) in the bacterial cell. Curcumin, an active ingredient from turmeric, is a major dietary molecule among Asians and possesses medicinal properties. Our research aimed at investigating whether curcumin modulates the action of ciprofloxacin. We investigated the role of curcumin in interfering with the antibacterial action of ciprofloxacin in vitro and in vivo. RTPCR, DNA fragmentation and confocal microscopy were used to investigate the modulation of ciprofloxacin-induced SOS response, DNA damage and subsequent filamentation by curcumin. Chemiluminescence and nitroblue tetrazolium reduction assays were performed to assess the interference of curcumin with ciprofloxacin-induced ROS. DNA binding and cleavage assays were done to understand the rescue of ciprofloxacin-mediated gyrase inhibition by curcumin. Curcumin interferes with the action of ciprofloxacin thereby increasing the proliferation of Salmonella Typhi and Salmonella Typhimurium in macrophages. In a murine model of typhoid fever, mice fed with curcumin had an increased bacterial burden in the reticuloendothelial system and succumbed to death faster. This was brought about by the inhibition of ciprofloxacin-mediated downstream signalling by curcumin. The antioxidant property of curcumin is crucial in protecting Salmonella against the oxidative burst induced by ciprofloxacin or interferon (IFN), a pro-inflammatory cytokine. However, curcumin is unable to rescue ciprofloxacin-induced gyrase inhibition. Curcumins ability to hinder the bactericidal action of ciprofloxacin and IFN might significantly augment Salmonella pathogenesis.
Resumo:
New metal complexes of the type M(nih)(L)](PF6)(n)center dot xAH(2)O and M(nih)(2)](PF6)center dot xH(2)O (where M = Co(III) or Ni(II), L = 1,10-phenanthroline (phen)/or 2,2' bipyridine (bpy), nih = 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone, n = 2 or 1 and x = 3 or 2) have been synthesized and characterized by elemental analysis, magnetic, IR and H-1 NMR spectral data. The electronic and magnetic moment 2.97-3.07 B.M. data infers octahedral geometry for all the complexes. The IR data reveals that Schiff base (nih) form coordination bond with the metal ion through azomethine-nitrogen, phenolic-oxygen and carbonyl-oxygen in a tridentate fashion. In addition, DNA-binding properties of these six metal complexes were investigated using absorption spectroscopy, viscosity measurements and thermal denaturation methods. The results indicated that the nickel(II) complex strongly bind with calf-thymus DNA with intrinsic DNA binding constant K-b value of 4.9 x 10(4) M-1 for (3), 4.2 x 10(4) M-1 for (4), presumably via an intercalation mechanism compared to cobalt(III) complex with K-b value of 4.6 x 10(4) M-1 (1) and 4.1 x 10(4) M-1 (2). The DNA Photoclevage experiment shows that, the complexes act as effective DNA cleavage agent. (C) 2012 Elsevier B.V. All rights reserved.
Interaction of Silver Nanoparticles with Serum Proteins Affects Their Antimicrobial Activity In Vivo
Resumo:
The emergence of multidrug-resistant bacteria is a global threat for human society. There exist recorded data that silver was used as an antimicrobial agent by the ancient Greeks and Romans during the 8th century. Silver nanoparticles (AgNPs) are of potential interest because of their effective antibacterial and antiviral activities, with minimal cytotoxic effects on the cells. However, very few reports have shown the usage of AgNPs for antibacterial therapy in vivo. In this study, we deciphered the importance of the chosen methods for synthesis and capping of AgNPs for their improved activity in vivo. The interaction of AgNPs with serum albumin has a significant effect on their antibacterial activity. It was observed that uncapped AgNPs exhibited no antibacterial activity in the presence of serum proteins, due to the interaction with bovine serum albumin (BSA), which was confirmed by UV-Vis spectroscopy. However, capped AgNPs with citrate or poly(vinylpyrrolidone)] exhibited antibacterial properties due to minimized interactions with serum proteins. The damage in the bacterial membrane was assessed by flow cytometry, which also showed that only capped AgNPs exhibited antibacterial properties, even in the presence of BSA. In order to understand the in vivo relevance of the antibacterial activities of different AgNPs, a murine salmonellosis model was used. It was conclusively proved that AgNPs capped with citrate or PVP exhibited significant antibacterial activities in vivo against Salmonella infection compared to uncapped AgNPs. These results clearly demonstrate the importance of capping agents and the synthesis method for AgNPs in their use as antimicrobial agents for therapeutic purposes.
Resumo:
A simple and efficient protocol for the synthesis of novel 2,6-bis(4-methoxyphenyl)-1-methylpiperidin-4-one oxime esters 4(a-q) is described. Initially, p-anisaldehyde 1 was condensed (Mannich reaction) with acetone and ammonium acetate trihydrate afforded 2,6-bis(4-methoxyphenyl)piperidin-4-one 2. Then, methylation followed by oximation with hydroxylamine hydrochloride (NH(2)OHa (TM) HCl) furnished a key scaffold 4. Further, to explore the enhanced biological properties of the piperidin-4-one core i.e. the key scaffold 4 was conjugated with substituted benzoyl chlorides in the presence of anhydrous K2CO3 as base to obtain novel 2,6-bis(4-methoxyphenyl)-1-methylpiperidin-4-one oxime esters 4(a-q) in excellent yields. The newly synthesized compounds were characterized by elemental analysis, IR, H-1 NMR, C-13 NMR and mass spectroscopic techniques, and screened for their in vitro antioxidant and antimicrobial activities. Most of the compounds exerted positive efficacy towards the biological assays performed. Among the synthesized analogues, compounds 4l and 4m exhibited promising antioxidant activity and on the other hand compounds 4b and 4d manifested persuasive antibacterial activity, whereas compound 4b displayed stupendous antifungal activity against A. flavus strain.
Resumo:
Poly(epsilon-caprolactone) (PCL) is an aliphatic polyester widely used for biomedical applications but lacks the mechanical properties desired for many load-bearing orthopedic applications. The objective of this study was to prepare and characterize PCL composites incorporating multiwall carbon nanotubes (MWNTs) with different surface functional groups. PCL composites were prepared by melt-mixing with three different types of MWNTs: pristine (pMWNT), amine functionalized (aMWNT), and carboxyl functionalized (cMWNT). Melt rheology and scanning electron microscopy indicated good dispersion of the nanotubes in the matrix. Tensile strength and elastic modulus of the polymer was significantly increased by the incorporation of MWNTs and further enhanced by favorable interactions between PCL and aMWNTs. Thermal analysis revealed that MWNTs act as heterogeneous nucleation sites for crystallization of PCL and increase polymer crystallinity. Incorporation of functionalized MWNTs increased the surface water wettability of PCL. Osteoblast proliferation and differentiation was significantly enhanced on functionalized composites. aMWNT composites also exhibited the best bactericidal response. This study demonstrates that surface functionalization of MWNTs profoundly influences the properties of PCL and amine-functionalization offers the optimal combination of mechanical properties, osteogenesis and antimicrobial response. These results have important implications for designing nanocomposites for use in orthopedics.
Resumo:
Hybrid nanocomposites of polycaprolactone (PCL) with multiwall carbon nanotubes (MWNTs) and silver nanoparticles (nAg) were prepared by melt mixing. Synergetic effect of the two nanofillers (MWNT and nAg) in PCL matrix was evaluated for dielectric and antibacterial properties. Dielectric results showed that the addition of nAg as filler in PCL matrix (PCL/nAg) had no effect on conductivity, whereas addition of MWNT in PCL matrix (PCL/MWNT) caused a sharp increase in conductivity of PCL. Interestingly, the hybrid nanocomposite (PCL/MWNT/nAg) incorporating MWNT and nAg also exhibited high electrical conductivity. The hybrid composite was found to have antibacterial property similar to that of PCL/nAg composite for lower loading of nAg. This study demonstrates that the synergetic interaction of the nanofillers in the hybrid nanocomposite improves both electrical conductivity and antibacterial properties of PCL.