907 resultados para Anodic Electrode
Resumo:
Electrochemical methods applied to organic species transformation has been used as excellent synthesis tools. C-C bonds can be established, making possible polymer synthesis by both anodic and cathodic reactions of suitable monomer species at the working electrode surface. In this study, anodic procedure was used to electropolymerization of 2-mercaptobenzimidazole at reticulated glassy carbon (RGC) surface. 2-mercaptobenzimidazole presents ligand sites towards Hg2+, Ag+ and Cu2+ ions. The obtained material has been able to adsorb the above mentioned ions in aqueous solution.
Resumo:
The reactions of four new unsymmetrical N,O-donor ligands, {H2BBPETEN= [N-(2-hydroxybenzyl) - N,N' - bis(2 methylpyridyl) -N'-(hydroxyethyl) ethylenodiamine], H3BPETEN=[N,N'- bis(2-hydroxybenzyl) -N- (2-methylpyridyl) -N'- (hydroxyethyl) ethylenodiamine], HTPETEN=[N,N,N'- tris(2-methylpyridyl) -N'- (hydroxyethyl) ethylenodiamine] and H3BIMETEN=[N,N'-(2-hydroxybenzyl)-N-(1-methylimidazol-2-il-methyl)-N'- (hydroxyethyl)ethylenodiamine]}, with Cu(II) salts afforded the following mononuclear compounds: [CuII(HBBPETEN)]ClO4, [CuII(H2BPETEN)]ClO4 , [CuII(HTPETEN)](PF6)2 and [CuII(H2BIMETEN)]ClO4 . All were characterized by EPR, electronic spectroscopy and electrochemistry. The four copper (II) compounds showed interesting electrochemistry properties. All presented an anodic wave that can be attributed to the Cu (I) oxide formation at the electrode surface, or to a Cu0 sediment at the same surface or yet, to Cu(I) -> Cu(II) oxidation process with coupled chemistry reaction, due to their irreversibility. Two of the complexes are described as interesting synthetic models for the active site of the metalloenzyme galactose oxidase.
Resumo:
Cyclic voltammetry was used to study 3,4-dihydroxybenzaldehyde (3,4-DHB) electropolymerization processes on carbon paste electrodes. The characteristics of the electropolymerized films were highly dependent on pH, anodic switching potential, scan rate, 3,4-DHB concentrations and number of cycles. Film stability was determined in citrate/phosphate buffer solutions at the same pH used during the electropolymerization process. The best conditions to prepare carbon paste modified electrodes were pH 7.8; 0.0 <= Eapl <= 0.25 V; 10 mV s-1; 0.25 mmol L-1 3,4-DHB and 10 scans. These carbon paste modified electrodes were used for NADH catalytic detection at 0.23 V in the range 0.015 <= [NADH] <= 0.21 mmol L-1. Experimental data were used to propose a mechanism for the 3,4--DHB electropolymerization processes, which involves initial phenoxyl radical formation.
Resumo:
The anodic voltammetric behavior of 4-chlorophenol (4-CF) in aqueous solution has been studied on a Boron-doped diamond electrode using square wave voltammetry (SWV). After optimization of the experimental conditions, 4-CF was analyzed in pure and natural waters using a Britton-Robinson buffer with pH = 6.0 as the supporting electrolyte. Oxidation occurs at 0.80 V vs Ag/AgCl in a two-electron process controlled by adsorption of the species. The detection limits obtained were 6.4 µg L-1 in pure water and 21.5 µg L-1 for polluted water taken from a local creek, respectively. The combination of square wave voltammetry and diamond electrodes is an interesting and desirable alternative for analytical determinations.
Resumo:
The aim of this work was to optimize the preparation of electrodes with riboflavin (RF) immobilized on a silica surface modified with niobium oxide and carbon paste. Electrode preparation was optimized employing a factorial design consisting of two levels and three factors. The electrochemical properties of immobilized RF were investigated by cyclic voltammetry. The factorial analysis was carried out analysing the current intensity (Ipa). It was possible to optimize the electrode to get the best reversibility in the redox process, i. e. the lowest separation between anodic and cathodic peak potentials and a current ratio close to unity. The concentration of supporting electrolyte has a small effect. The proportion has the highest effect and the interaction factor between proportion and mixture has also a significant effect on the current intensity.
Resumo:
The electrochemical behavior of N-nitrosothiazolidine carboxylic acid (NTAC) on gold and hanging mercury electrodes, using the cyclic and square wave voltammetries, was studied. Whereas NTAC suffer reduction in a single step on the mercury electrode, two peaks appears on the cyclic voltammograms on the gold electrode, one anodic peak overlaying the gold oxide process at 1.2 V and one cathodic peak at -0.41 V vs Ag/AgCl, KCl 3.0 mol L-1. The cathodic peak depends on the previous oxidation of NTAC at the electrode surface, presents irreversible and adsorption controlled characteristics and it is suitable for quantitative purposes.
Resumo:
We carried out an electrochemical study of the cobalt electrodeposition onto glassy carbon electrode from an aqueous solution containing 10-2 M of CoSO4 + 1 M (NH4)2SO4 at natural pH 4.5. The potentiostatic study indicated a progressive 3D nucleation and growth during the deposition process. The average diffusion coefficient calculated for this system was 2.65 X 10-6 cm² s-1 while the ΔG for the formation of stable nucleus was 6.50 X 10-20 J/nuclei. The scanning electron microscopy images indicated the formation of small and homogeneous nucleus onto GCE of approximately 300 nm.
Resumo:
It was carried out an electrochemical study of the cobalt electrodeposition onto HOPG electrode from an aqueous solution containing 10-2 M of CoSO4 + 1M (NH4)2SO4. Nucleation parameters such as nucleation rate, density of active nucleation sites, saturation nucleus and the rate constant of the proton reduction reaction (kPR) were determined from potentiostatic studies. An increase in kPR values with the decrease in the applied potential suggested a competition between H+ and Co2+ by the active sites on the surface. The ΔG energy calculated for the formation of stable nucleus was 8.21x10-21 J/nuclei. The AFM study indicated the formation of small clusters of 50-400 nm in diameter and 2-120 nm in height.
Resumo:
The electrochemical behavior of the interaction of amodiaquine with DNA on a carbon paste electrode was studied using voltametric techniques. In an acid medium, an electroactive adduct is formed when amodiaquine interacts with DNA. The anodic peak is dependent on pH, scan rate and the concentration of the pharmaceutical. Adduct formation is irreversible in nature, and preferentially occurs by interaction of the amodiaquine with the guanine group. Theoretical calculations for optimization of geometry, and DFT analyses and on the electrostatic potential map (EPM), were used in the investigation of adduct formation between amodiaquine and DNA.
Resumo:
This paper reports the use of an electrode modified with poly(o-methoxyaniline) for detecting lithium ions. These ions are present in drugs used for treating bipolar disorder and that requires periodical monitoring of the concentration of lithium in blood serum. Poly(o-methoxyaniline) was obtained electrochemically by cyclic voltammetry on the surface of a gold electrode. The results showed that the electrode modified with a conducting polymer responded to lithium ions in the concentration range of 1 x 10-5 to 1 x 10-4 mol L-1 . The results also confirmed that the performance of the modified electrode was comparable to that of the standard method (atomic emission spectrophotometry).
Resumo:
Metals such as copper and zinc are essential for the development and maintenance of numerous enzymatic activities, mitochondrial functions, neurotransmission, and also for memorization and learning. However, disruption in their homeostasis can cause neurodegenerative disorders such as the Alzheimer and Parkinson diseases. In this work, the speciation of copper and zinc in urine samples was carried out. To this end, free and total metal concentrations were determined by square wave anodic stripping voltammetry using a glassy carbon electrode coated with bismuth film. The digestion of the samples was performed in a microwave with the addition of oxidant reagents.
Resumo:
A simple procedure is described for the determination of scopolamine by square-wave voltammetry using a cathodically pretreated boron-doped diamond electrode. Cyclic voltammetry studies indicate that the oxidation of scopolamine is irreversible at a peak potential of 1.59 V (vs. Ag/AgCl (3.0 mol L-1 KCl)) in a 0.50 mol L-1 sulfuric acid solution. Under optimized conditions, the analytical curve obtained was linear (r = 0.9996) for the scopolamine concentration range of 1.0 to 110 µmol L-1, with a detection limit of 0.84 µmol L-1. The method was successfully applied to the determination of scopolamine in pharmaceutical formulations with minimum sample preparation.
Resumo:
A nitrate selective electrode was prepared for use in an aggresive medium (high acidic or basic concentration). It is demonstrated that the depending E graph with respect to pNO3- has not a Nernstian response in concentration acidic range upper 0.1 mol/L H2SO4. The observed behaviour is supposed to be due to the formation of a dimeric anion HN2O6-.
Resumo:
The determination of the total calcium in juice, syrups, and other products of the sugar industry is investigated. Total calcium and free calcium is determinated by AAS and employing Ca-selective electrode respectively. A coefficient is obtained for the relation of total calcium with respect to free calcium. The coefficient is employed to determine the content of total calcium in accordance with the following equation.
Resumo:
The electrochemical oxidation on platinum and platinum rhodium bimetallic electrodes was studied by Differential Electrochemical Mass Spectrometry for several ethanol concentrations in solution. It is found that increasing the ethanol concentration the production of the partially oxidized products (acetaldehyde) increases as the concentration increases. On the other hand, addition of 25% at. of rhodium increases the full oxidation to CO2. Another interesting result observed is a correlation between the intensity of the dehydrogenations peak at 0.3 V vs. RHE and the CO2 yield for the different ethanol concentration studied.