471 resultados para Annona sylvatica
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Horticultura) - FCA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
O objetivo deste trabalho foi estudar os efeitos do ácido giberélico (GA3), do ethephon e da interação de ambos os reguladores vegetais no processo germinativo de sementes de atemoia (Annona cherimola Mill. x A. squamosa L. ), cultivar 'Gefner'. Empregou-se delineamento experimental inteiramente casualizado, em esquema fatorial 5², com os tratamentos constituídos pela combinação de cinco concentrações de GA3 (ácido giberélico) e cinco concentrações de ethephon, resultando em 25 tratamentos, com quatro repetições de 25 sementes por parcela. As concentrações de GA3 empregadas foram: 0; 250; 500; 750 e 1.000 mg L-1 i.a.e de ethephon: 0; 25; 50; 75 e 100 mg L-1 i.a.. Os tratamentos com os reguladores vegetais foram aplicados na semente por imersão das mesmas nas soluções de GA3 e ethephon por período de 36 horas. As sementes foram semeadas em rolo de papel germitest e levadas à câmara de germinação onde permaneceram no escuro, com temperatura alternada entre 20ºC por 8 horas e 30ºC por 16 horas. As variáveis avaliadas foram: percentagem, tempo e índice de velocidade de germinação, percentagem de plântulas normais e percentagem de sementes dormentes. Existe interação da ação dos reguladores vegetais estudados no processo germinativo de sementes de atemoia, o que permite concluir que a percentagem de germinação de sementes de atemoia (Annona cherimola Mill. x A. squamosa L. ) cv 'Gefner' é aumentada com o emprego de 778 mg L-1 de GA3, enquanto a associação entre elevadas concentrações de GA3 e 75 a 100 mg L-1 de ethephon incrementam o índice de velocidade de germinação e a percentagem de plântulas normais.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fungi are important members of soil microbial communities with a crucial role in biogeochemical processes. Although soil fungi are known to be highly diverse, little is known about factors influencing variations in their diversity and community structure among forests dominated by the same tree species but spread over different regions and under different managements. We analyzed the soil fungal diversity and community composition of managed and unmanaged European beech dominated forests located in three German regions, the Schwäbische Alb in Southwestern, the Hainich-Dün in Central and the Schorfheide Chorin in the Northeastern Germany, using internal transcribed spacer (ITS) rDNA pyrotag sequencing. Multiple sequence quality filtering followed by sequence data normalization revealed 1655 fungal operational taxonomic units. Further analysis based on 722 abundant fungal OTUs revealed the phylum Basidiomycota to be dominant (54%) and its community to comprise 71.4% of ectomycorrhizal taxa. Fungal community structure differed significantly (p≤0.001) among the three regions and was characterized by non-random fungal OTUs co-occurrence. Soil parameters, herbaceous understory vegetation, and litter cover affected fungal community structure. However, within each study region we found no difference in fungal community structure between management types. Our results also showed region specific significant correlation patterns between the dominant ectomycorrhizal fungal genera. This suggests that soil fungal communities are region-specific but nevertheless composed of functionally diverse and complementary taxa.
Resumo:
Most forests are exposed to anthropogenic management activities that affect tree species composition and natural ecosystem processes. Changes in ecosystem processes such as herbivory depend on management intensity, and on regional environmental conditions and species pools. Whereas influences of specific forest management measures have already been addressed for different herbivore taxa on a local scale, studies considering effects of different aspects of forest management across different regions are rare. We assessed the influence of tree species composition and intensity of harvesting activities on arthropod herbivores and herbivore-related damage to beech trees, Fagus sylvatica, in 48 forest plots in three regions of Germany. We found that herbivore abundance and damage to beech trees differed between regions and that – despite the regional differences - density of tree-associated arthropod taxa and herbivore damage were consistently affected by tree species composition and harvest intensity. Specifically, overall herbivore damage to beech trees increased with increasing dominance of beech trees – suggesting the action of associational resistance processes – and decreased with harvest intensity. The density of leaf chewers and mines was positively related to leaf damage, and several arthropod groups responded to beech dominance and harvest intensity. The distribution of damage patterns was consistent with a vertical shift of herbivores to higher crown layers during the season and with higher beech dominance. By linking quantitative data on arthropod herbivore abundance and herbivory with tree species composition and harvesting activity in a wide variety of beech forests, our study helps to better understand the influence of forest management on interactions between a naturally dominant deciduous forest tree and arthropod herbivores.
Resumo:
Predicting the timing and amount of tree mortality after a forest fire is of paramount importance for post-fire management decisions, such as salvage logging or reforestation. Such knowledge is particularly needed in mountainous regions where forest stands often serve as protection against natural hazards (e.g., snow avalanches, rockfalls, landslides). In this paper, we focus on the drivers and timing of mortality in fire-injured beech trees (Fagus sylvatica L.) in mountain regions. We studied beech forests in the southwestern European Alps, which burned between 1970 and 2012. The results show that beech trees, which lack fire-resistance traits, experience increased mortality within the first two decades post-fire with a timing and amount strongly related to the burn severity. Beech mortality is fast and ubiquitous in high severity sites, whereas small- (DBH <12 cm) and intermediate-diameter (DBH 12–36 cm) trees face a higher risk to die in moderate-severity sites. Large-diameter trees mostly survive, representing a crucial ecological legacy for beech regeneration. Mortality remains low and at a level similar to unburnt beech forests for low burn severity sites. Beech trees diameter, the presence of fungal infestation and elevation are the most significant drivers of mortality. The risk of beech to die increases toward higher elevation and is higher for small-diameter than for large-diameter trees. In case of secondary fungi infestation beech faces generally a higher risk to die. Interestingly, fungi that initiate post-fire tree mortality differ from fungi occurring after mechanical injury. From a management point of view, the insights about the controls of post-fire mortality provided by this study should help in planning post-fire silvicultural measures in montane beech forests.