995 resultados para Annealing simulation
Resumo:
There are large uncertainties in the aerothermodynamic modelling of super-orbital re-entry which impact the design of spacecraft thermal protection systems (TPS). Aspects of the thermal environment of super-orbital re-entry flows can be simulated in the laboratory using arc- and plasma jet facilities and these devices are regularly used for TPS certification work [5]. Another laboratory device which is capable of simulating certain critical features of both the aero and thermal environment of super-orbital re-entry is the expansion tube, and three such facilities have been operating at the University of Queensland in recent years[10]. Despite some success, wind tunnel tests do not achieve full simulation, however, a virtually complete physical simulation of particular re-entry conditions can be obtained from dedicated flight testing, and the Apollo era FIRE II flight experiment [2] is the premier example which still forms an important benchmark for modern simulations. Dedicated super-orbital flight testing is generally considered too expensive today, and there is a reluctance to incorporate substantial instrumentation for aerothermal diagnostics into existing missions since it may compromise primary mission objectives. An alternative approach to on-board flight measurements, with demonstrated success particularly in the ‘Stardust’ sample return mission, is remote observation of spectral emissions from the capsule and shock layer [8]. JAXA’s ‘Hayabusa’ sample return capsule provides a recent super-orbital reentry example through which we illustrate contributions in three areas: (1) physical simulation of super-orbital re-entry conditions in the laboratory; (2) computational simulation of such flows; and (3) remote acquisition of optical emissions from a super-orbital re entry event.
Resumo:
Physiological pulsatile flow in a 3D model of arterial double stenosis, using the modified Power-law blood viscosity model, is investigated by applying Large Eddy Simulation (LES) technique. The computational domain has been chosen is a simple channel with biological type stenoses. The physiological pulsation is generated at the inlet of the model using the first four harmonics of the Fourier series of the physiological pressure pulse. In LES, a top-hat spatial grid-filter is applied to the Navier-Stokes equations of motion to separate the large scale flows from the subgrid scale (SGS). The large scale flows are then resolved fully while the unresolved SGS motions are modelled using the localized dynamic model. The flow Reynolds numbers which are typical of those found in human large artery are chosen in the present work. Transitions to turbulent of the pulsatile non-Newtonian along with Newtonian flow in the post stenosis are examined through the mean velocity, wall shear stress, mean streamlines as well as turbulent kinetic energy and explained physically along with the relevant medical concerns.
Resumo:
Discrete stochastic simulations, via techniques such as the Stochastic Simulation Algorithm (SSA) are a powerful tool for understanding the dynamics of chemical kinetics when there are low numbers of certain molecular species. However, an important constraint is the assumption of well-mixedness and homogeneity. In this paper, we show how to use Monte Carlo simulations to estimate an anomalous diffusion parameter that encapsulates the crowdedness of the spatial environment. We then use this parameter to replace the rate constants of bimolecular reactions by a time-dependent power law to produce an SSA valid in cases where anomalous diffusion occurs or the system is not well-mixed (ASSA). Simulations then show that ASSA can successfully predict the temporal dynamics of chemical kinetics in a spatially constrained environment.
Resumo:
Discrete stochastic simulations are a powerful tool for understanding the dynamics of chemical kinetics when there are small-to-moderate numbers of certain molecular species. In this paper we introduce delays into the stochastic simulation algorithm, thus mimicking delays associated with transcription and translation. We then show that this process may well explain more faithfully than continuous deterministic models the observed sustained oscillations in expression levels of hes1 mRNA and Hes1 protein.
Resumo:
Eco-driving is an initiative driving behavior which aims to reduce fuel consumption and emissions from automobiles. Recently, it has attracted increasing interests and has been adopted by many drivers in Australia. Although many of the studies have revealed considerable benefits in terms of fuel consumption and emissions after utilising eco-driving, most of the literature investigated eco-driving effects on individual driver but not traffic flow. The driving behavior of eco-drivers will potentially affect other drivers and thereby affects the entire traffic flow. To comprehensively assess and understand how effectively eco-driving can perform, therefore, measurement on traffic flow is necessary. In this paper, we proposed and demonstrated an evaluation method based on a microscopic traffic simulator (Aimsun). We focus on one particular eco-driving style which involves moderate and smooth acceleration. We evaluated both traffic performance (travel time) and environmental performance (fuel consumption and CO2 emission) at traffic intersection level in a simple simulation model. The before-and-after comparisons indicated potentially negative impacts when using eco-driving, which highlighted the necessity to carefully evaluate and improve eco-driving before wide promotion and implementation.
Resumo:
The behaviour of ion channels within cardiac and neuronal cells is intrinsically stochastic in nature. When the number of channels is small this stochastic noise is large and can have an impact on the dynamics of the system which is potentially an issue when modelling small neurons and drug block in cardiac cells. While exact methods correctly capture the stochastic dynamics of a system they are computationally expensive, restricting their inclusion into tissue level models and so approximations to exact methods are often used instead. The other issue in modelling ion channel dynamics is that the transition rates are voltage dependent, adding a level of complexity as the channel dynamics are coupled to the membrane potential. By assuming that such transition rates are constant over each time step, it is possible to derive a stochastic differential equation (SDE), in the same manner as for biochemical reaction networks, that describes the stochastic dynamics of ion channels. While such a model is more computationally efficient than exact methods we show that there are analytical problems with the resulting SDE as well as issues in using current numerical schemes to solve such an equation. We therefore make two contributions: develop a different model to describe the stochastic ion channel dynamics that analytically behaves in the correct manner and also discuss numerical methods that preserve the analytical properties of the model.