821 resultados para Alzheimer’s disease (AD)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The density and spatial patterns of neuritic plaques (NP) and cellular neurofibrillary tangles (cNFT) were studied in various brain regions in cases of Alzheimer’s disease. The objective was to test the hypothesis that NP develop from cNFT. cNFT were most abundant in the cornu Ammonis (CA) region of the hippocampus while NP were most abundant in gyri adjacent to the hippocampus. The density of NP in a brain region was positively correlated with the density of cNFT. In 83% of brain regions examined, NP occurred in clusters and in 51% the clusters exhibited a regular periodicity parallel to the tissue boundary. cNFT were clustered in 97% of brain regions, 61% exhibiting a regular periodicity. Mean cluster size of NP in a brain region was not significantly correlated with the cluster size of the cNFT. In most cortical regions, clusters of NP and cNFT were spatially unrelated to each other. However, coincident clusters of NP and cNFT were observed in the CA region of the hippocampus in 4/5 patients. It was concluded that the spatial patterns of the NP and cNFT clusters were not consistent with the hypothesis that the majority of NP evolved from cNFT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The laminar distribution of senile plaques (SP) and neurofibrillary tangles (NFT) was studied in areas B17 and B18 of the visual cortex in 18 cases of Alzheimer’s disease which varied in disease onset and duration. The objective was to test the hypothesis that SP and NFT could spread via either the feedforward or feedback short cortico-cortical projections. In area B17, the mean density of SP and NFT reached a maximum in lamina III and in laminae II and III respectively. In B18, mean SP density was maximal in laminae III and IV and NFT density in laminae II and III. No significant correlations were observed in any cortical lamina between the density of SP and patient age. However, the density of NFT in laminae III, IV and VI in B18 was negatively correlated with patient age. In addition, in B18, the density of SP in lamina II and lamina V was negatively correlated with disease duration and disease onset respectively. Although these results suggest that SP and NFT might spread between B17 and B18 via the feedforward short cortico-cortical projections, it is also possible that the longer cortico-cortical and cortico-subcortical connections may be involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The important role played by vascular factors in the pathogenesis of neurodegenerative disease has been increasingly realised over recent years. The nature and impact of ocular and systemic vascular dysfunction in the pathogenesis of comparable neurodegenerative diseases such as glaucoma and Alzheimer’s disease (AD) has however never been fully explored. The aim of this thesis was therefore to investigate the presence of macro- and micro-vascular alterations in both glaucoma and AD and to explore the relationships between these two chronic, slowly progressive neurodegenerative diseases. The principle sections and findings of this work were: 1. Is the eye a window to the brain? Retinal vascular dysfunction in Alzheimer’s disease · Mild newly diagnosed AD patients demonstrated ocular vascular dysfunction, in the form of an altered retinal vascular response to flicker light, which correlated with their degree of cognitive impairment. 2. Ocular and systemic vascular abnormalities in newly diagnosed normal tension glaucoma (NTG) patients · NTG patients demonstrated an altered retinal arterial constriction response to flicker light along with an increased systemic arterial stiffness and carotid artery intima-media thickness (IMT). These findings were not replicated by healthy age matched controls. 3. Ocular vascular dysregulation in AD compares to both POAG and NTG · AD patients demonstrated altered retinal arterial reactivity to flicker light which was comparable to that of POAG patients and altered baseline venous reactivity which was comparable to that of NTG patients. Neither alteration was replicated by healthy controls. 4. POAG and NTG: two separate diseases or one continuous entity? The vascular perspective · POAG and NTG patients demonstrated comparable alterations in nocturnal systolic blood pressure (SBP) variability, ocular perfusion pressure, retinal vascular reactivity, systemic arterial stiffness and carotid IMT. · Nocturnal SBP variability was found to correlate with both retinal artery baseline diameter fluctuation and carotid IMT across the glaucoma groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alzheimer’s disease (AD) is an important neurodegenerative disorder causing visual problems in the elderly population. The pathology of AD includes the deposition in the brain of abnormal aggregates of ?-amyloid (A?) in the form of senile plaques (SP) and abnormally phosphorylated tau in the form of neurofibrillary tangles (NFT). A variety of visual problems have been reported in patients with AD including loss of visual acuity (VA), colour vision and visual fields; changes in pupillary responses to mydriatics, defects in fixation and in smooth and saccadic eye movements; changes in contrast sensitivity and in visual evoked potentials (VEP); and disturbances in complex visual tasks such as reading, visuospatial function, and in the naming and identification of objects. In addition, pathological changes have been observed to affect the eye, visual pathway, and visual cortex in AD. To better understand degeneration of the visual cortex in AD, the laminar distribution of the SP and NFT was studied in visual areas V1 and V2 in 18 cases of AD which varied in disease onset and duration. In area V1, the mean density of SP and NFT reached a maximum in lamina III and in laminae II and III respectively. In V2, mean SP density was maximal in laminae III and IV and NFT density in laminae II and III. The densities of SP in laminae I of V1 and NFT in lamina IV of V2 were negatively correlated with patient age. No significant correlations were observed in any cortical lamina between the density of NFT and disease onset or duration. However, in area V2, the densities of SP in lamina II and lamina V were negatively correlated with disease duration and disease onset respectively. In addition, there were several positive correlations between the densities of SP and NFT in V1 with those in area V2. The data suggest: (1) NFT pathology is greater in area V2 than V1, (2) laminae II/III of V1 and V2 are most affected by the pathology, (3) the formation of SP and NFT in V1 and V2 are interconnected, and (4) the pathology may spread between visual areas via the feed-forward short cortico-cortical connections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To determine the efficacy of cholinesterase inhibitors (ChEIs) in improving the behavioral and psychological symptoms of dementia (BPSD) in patients with Alzheimer’s disease (AD). Data sources: We searched MEDLINE, Cochrane Registry, and the Cumulative Index to Nursing and Allied Health Literature (CINAHL) from 1966 to 2007. We limited our search to English Language, full text, published articles and human studies. Data extraction: We included randomized, double-blind, placebo-controlled trials evaluating the efficacy of donepezil, rivastigmine, or galantamine in managing BPSD displayed by AD patients. Using the United States Preventive Services Task Force (USPSTF) guidelines, we critically appraised all studies and included only those with an attrition rate of less than 40%, concealed measurement of the outcomes, and intention to treat analysis of the collected data. All data were imputed into pre-defined evidence based tables and were pooled using the Review Manager 4.2.1 software for data synthesis. Results: We found 12 studies that met our inclusion criteria but only nine of them provided sufficient data for the meta-analysis. Among patients with mild to severe AD and in comparison to placebo, ChEIs as a class had a beneficial effects on reducing BPSD with a standard mean difference (SMD) of -0.10 (95% confidence interval [CI]; -0.18, -0.01) and a weighted mean difference (WMD) of -1.38 neuropsychiatry inventory point (95% CI; -2.30, -0.46). In studies with mild AD patients, the WMD was -1.92 (95% CI; -3.18, -0.66); and in studies with severe AD patients, the WMD was -0.06 (95% CI; -2.12, +0.57). Conclusion: Cholinesterase inhibitors lead to a statistical significant reduction in BPSD among patients with AD, yet the clinical relevance of this effect remains unclear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The temporal lobe is a major site of pathology in a number of neurodegenerative diseases. In this chapter, the densities of the characteristic pathological lesions in various regions of the temporal lobe were compared in eight neurodegenerative disorders, viz., Alzheimer’s disease (AD), Down’s syndrome (DS), dementia with Lewy bodies (DLB), Pick’s disease (PiD), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), sporadic Creutzfeldt-Jakob disease (sCJD), and neuronal intermediate filament inclusion disease (NIFID). Temporal lobe pathology was observed in all of these disorders most notably in AD, DS, PiD, sCJD, and NIFID. The regions of the temporal lobe affected by the pathology, however, varied between disorders. In AD and DS, the greatest densities of ?-amyloid (A?) deposits were recorded in cortical regions adjacent to the hippocampus (HC), DS exhibiting greater densities of A? deposits than AD. Similarly, in sCJD, greatest densities of prion protein (PrPsc) deposits were recorded in cortical areas of the temporal lobe. In AD and PiD, significant densities of neurofibrillary tangles (NFT) and Pick bodies (PB) respectively were present in sector CA1 of the HC while in CBD, the greatest densities of tau-immunoreactive neuronal cytoplasmic inclusions (NCI) were present in the parahippocampal gyrus (PHG). Particularly high densities of PB were present in the DG in PiD, whereas NFT in AD and Lewy bodies (LB) in DLB were usually absent in this region. These data confirm that the temporal lobe is an important site of pathology in the disorders studied regardless of their molecular ‘signature’. However, disorders differ in the extent to which the pathology spreads to affect the HC which may account for some of the observed differences in clinical dementia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. Using an image analysis system to determine whether there is loss of axons in the olfactory tract (OT) in Alzheimer’s disease (AD). Design. A retrospective neuropathological study. Patients Nine control patients and eight clinically and pathologically verified AD cases. Measurements and Results. There was a reduction in axon density in AD compared with control subjects in the central and peripheral regions of the tract. Axonal loss was mainly of axons with smaller (<2.99 µm2) myelinated cross-sectional areas. Conclusions. The data suggest significant degeneration of axons within the OT involving the smaller sized axons. Loss of axons in the OT is likely to be secondary to pathological changes originating within the parahippocampal gyrus rather than to a pathogen spreading into the brain via the olfactory pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large number of risk factors have been associated with Alzheimer’s disease (AD). This article discusses the validity of the major risk factors that have been identified including age, genetics, exposure to aluminium, head injury, malnutrition and diet, mitochondrial dysfunction, vascular disease, immune system dysfunction, and infection. Rare forms of early-onset familial AD (FAD) are strongly linked to the presence of specific gene mutations, viz. mutations in amyloid precursor protein (APP) and presenilin (PSEN1/2) genes. By contrast, late-onset sporadic AD (SAD) is a multifactorial disorder in which age-related changes, genetic risk factors, such as allelic variation in apolipoprotein E (Apo E) gene, vascular disease, head injury and risk factors associated with diet, the immune system, mitochondrial function, and infection may all be involved. Life-style changes that may reduce the effect of these risk factors and therefore, the risk of AD are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dentate gyrus (DG) is an important part of the hippocampal formation and is believed to be involved in a variety of brain functions including episodic and spatial memory and the exploration of novel environments. In several neurodegenerative disorders, significant pathology occurs in the DG which may be involved in the development of clinical dementia. Based on the abundance of pathological change, neurodegenerative disorders could be divided into three groups: (1) those in which high densities of neuronal cytoplasmic inclusions (NCI) were present in DG granule cells, e.g., Pick’s disease (PiD), frontotemporal lobar degeneration with TDP-43-immunoreactive inclusions (FTLD-TDP), and neuronal intermediate filament inclusion disease (NIFID), (2) those in which aggregated protein deposits were distributed throughout the hippocampal formation including the molecular layer of the DG, e.g., Alzheimer’s disease (AD), Down’s syndrome (DS), and variant Creutzfeldt-Jakob disease (vCJD), and (3) those in which in there was significantly less pathology in the DG, e.g., Parkinson’s disease dementia (PD-Dem), dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), multiple system atrophy (MSA), and sporadic CJD (sCJD). Hence, DG pathology varied significantly among disorders which could contribute to differences in clinical dementia. Pathological differences among disorders could reflect either differential vulnerability of the DG to specific molecular pathologies or variation in the degree of spread of pathological proteins into the hippocampal formation from adjacent regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dentate gyrus (DG) is an important part of the hippocampal formation and is believed to be involved in a variety of brain functions including episodic and spatial memory and the exploration of novel environments. In several neurodegenerative disorders, significant pathology occurs in the DG which may be involved in the development of clinical dementia. Based on the abundance of pathological change, neurodegenerative disorders can be divided into three groups: (1) those in which high densities of neuronal cytoplasmic inclusions (NCI) are present in DG granule cells, e.g., Pick’s disease (PiD), frontotemporal lobar degeneration with TDP-43-immunoreactive inclusions (FTLD-TDP), and neuronal intermediate filament inclusion disease (NIFID), (2) those in which aggregated protein deposits are distributed throughout the hippocampal formation including the molecular layer of the DG, e.g., Alzheimer’s disease (AD), Down’s syndrome (DS), and variant Creutzfeldt-Jakob disease (vCJD), and (3) those in which in there is significantly less pathology in the DG, e.g., Parkinson’s disease dementia (PD-Dem), dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), multiple system atrophy (MSA), and sporadic CJD (sCJD). Hence, DG pathology varies significantly among disorders which could contribute to differences in clinical dementia. Pathological differences among disorders could reflect either differential vulnerability of the DG to specific molecular pathologies or variation in the degree of spread of pathological proteins into the hippocampal formation from adjacent regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article discusses the structure, anatomical connections, and functions of the hippocampus (HC) of the human brain and its significance in neuropsychology and disease. The HC is concerned with the analysis of highly abstract data derived from all sensory systems but its specific role remains controversial. Hence, there have been three major theories concerning its function, viz., the memory theory, the spatial theory, and the behavioral inhibition system (BIS) theory. The memory theory has its origin in the surgical destruction of the HC, which results in severe anterograde and partial retrograde amnesia. The spatial theory has its origin in the observation that neurons in the HC of animals show activity related to their location within the environment. By contrast, the behavioral inhibition theory suggests that the HC acts as a ‘comparator’, i.e., it compares current sensory events with expected or predicted events. If a set of expectations continues to be verified then no alteration of behavior occurs. If, however, a ‘mismatch’ is detected then the HC intervenes by initiating appropriate action by active inhibition of current motor programs and initiation of new data gathering. Understanding the anatomical connections of the hippocampus may lead to a greater understanding of memory, spatial orientation, and states of anxiety in humans. In addition, HC damage is a feature of neurodegenerative diseases such as Alzheimer’s disease (AD), dementia with Lewy bodies (DLB), Pick’s disease (PiD), and Creutzfeldt-Jakob disease (CJD) and understanding HC function may help to explain the development of clinical dementia in these disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oligodendrocytes have multiple functions in the central nervous system including mechanical support of neurons, production of myelin sheaths, and uptake and inactivation of chemical neurotransmitters released by neurons. Consequently, oligodendrocytes could be involved in the pathology of a number of neurodegenerative diseases. Although, the molecular mechanisms involved require further elucidation, it is likely that oligodendrocyte dysfunction is important in Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). In addition, abnormal protein aggregates in the form of oligodendrocyte inclusions (OI) have been observed in several other disorders, most notable in multiple system atrophy (MSA), in which the glial cytoplasmic inclusion (GCI) is the ‘signature’ pathology of the disease. OI have also been identified in argyrophilic grain disease (AGD), progressive supranuclear palsy (PSP) (Armstrong et al 2007), and various forms of frontotemporal lobar degeneration (FTLD) (Armstrong et al 2010), although their role in the pathology of these disorders is less clear. It is likely that future research will expand the range of disorders in which oligodendrocytes play a significant role in neurodegeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Degeneration of white matter fibre tracts occurs in several neurodegenerative disorders and results in various histological abnormalities including loss of axons, vacuolation, gliosis, axonal varicosities and spheroids, corpora amylacea, extracellular protein deposits, and glial inclusions (GI). This chapter describes quantitative studies that have been carried out on white matter pathology in a variety of neurodegenerative disease. First, in Alzheimer’s disease (AD), axonal loss quantified in histological sections stained with toluidine blue, occurs in several white matter fibre tracts including the optic nerve, olfactory tract, and corpus callosum. Second, in Creutzfeldt-Jakob disease (CJD), sections of cerebral cortex stained with haematoxylin and eosin (H/E) or immunolabelled with antibodies against the disease form of prion protein (PrPsc), reveal extensive vacuolation, gliosis of white matter, and deposition of PrPsc deposits. Third, GI immunolabelled with antibodies against various pathological proteins including tau, -synuclein, TDP-43, and FUS, have been recorded in white matter of a number of disorders including frontotemporal lobar degeneration (FTLD), progressive supranuclear palsy (PSP), multiple system atrophy (MSA), and neuronal intermediate filament inclusion disease (NIFID). Axonal varicosities have also been observed in NIFID. There are two important questions regarding white matter pathology that need further investigation: (1) what is the relative importance of white and gray matter pathologies in different disorders and (2) do white matter abnormalities precede or are they the consequence of gray matter pathology?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alzheimer’s disease (AD) is neuropathologically characterized by excessive beta -amyloid (Aβ) plaques and neurofibrillary tangles composed of hyperphosphorylated tau in the brain. Although the etiology of genetic cases of AD has been attributed to mutations in presenilin and amyloid precursor protein (APP) genes, in most sporadic cases of AD, the etiology is still unknown and various predisposing factors could contribute to the pathology of AD. Predominant among these possible predisposing factors that have been implicated in AD are age, hypertension, traumatic brain injury, diabetes, chronic neuroinflammation, alteration in calcium levels and oxidative stress. Since both inflammation and altered calcium levels are implicated in the pathogenesis of AD, we wanted to study the effect of altered levels of calcium on inflammation and the subsequent effect of selective calcium channel blockers on the production of pro-inflammatory cytokines and chemokines. Our hypothesis is that Aβ, depending on it conformation, may contribute to altered levels of intracellular calcium in neurons and glial cells. We wanted to determine which conformation of Aβ was most pathogenic in terms of increasing inflammation and calcium influx and further elucidate the possibility of a link between altered calcium levels and inflammation. In addition, we wanted to test whether calcium channel blockers could inhibit the inflammation mediated by the most pathogenic form of Aβ, by antagonizing the calcium influx triggered by Aβ. Our results in human glial and neuronal cells demonstrate that the high molecular weight oligomers are the most potent at stimulating the release of pro-inflammatory cytokines IL-6 and IL-8 as well as increasing intracellular levels of calcium compared to other conformations of Aβ. Further, L-type calcium channel blockers and calmodulin kinase inhibitors are able to significantly reduce the levels of IL-6 and IL-8. These results suggest that Aβ-induced alteration of intracellular calcium levels contributes to its pro-inflammatory effect.