1000 resultados para Alkenone, C37:2
Resumo:
Selective degradation of organic matter in sediments is important for reconstructing past environments and understanding the carbon cycle. Here, we report on compositional changes between and within lipid classes and kerogen types (represented by palynomorph groups) in relation to the organic matter flux to the sea floor and oxidation state of the sediments since the early Holocene for central Eastern Mediterranean site ABC26. This includes the initially oxic but nowadays anoxic presapropelic interval, the still unoxidised lower part of the organic rich S1 sapropel, its postdepositionally oxidised and nowadays organic-poor upper part as well as the overlying postsapropelic sediments which have always been oxic. A general ~ 2.3 times increase in terrestrial and marine input during sapropel formation is estimated on the basis of the total organic carbon (TOC), pollen, spore, dinoflagellate cyst, n-alkane, n-alkanol and n-alkanoic acid concentration changes in the unoxidised part of the sapropel. The long-chain alkenones, 1,15 diols and keto-ols, loliolides and sterols indicate that some plankton groups, notably dinoflagellates, may have increased much more. Apart from the terrestrial and surface water contributions to the sedimentary organic matter, anomalous distributions and preservation of some C23-C27 alkanes, alkanols and alkanoic acids have been observed, which are interpreted as a contribution by organisms living in situ. Comparison of the unoxidised S1 sapropel with the overlying oxidised sapropel and the organic matter concentration profiles in the oxidised postsapropelic sediments demonstrates strong and highly selective aerobic degradation of lipids and palynomorphs. There seems to be a fundamental difference in degradation kinetics between lipids and pollen which may be possibly related with the absence of sorptive preservation as a protective mechanism for palynomorph degradation. The n-alkanes, Impagidinium, and Nematosphaeropsis are clearly more resistant than TOC. The n-alkanols and n-carboxylic acids are about equally resistant whereas the pollen, all other dinoflagellate cysts and other lipids appear to degrade considerably faster, which questions the practice of normalising to TOC without taking diagenesis into account. Selective degradation also modifies the relative distributions within lipid classes, whereby the longer-chain alkanes, alcohols and fatty acids disappear faster than their shorter-chain equivalents. Accordingly, interpretation of lipid and palynomorph assemblages in terms of pre- or syndepositional environmental change should be done carefully when proper knowledge of the postdepositional preservation history is absent. Two lipid-based preservation proxies are tested the diol-keto-ol oxidation index based on the 1,15C30 diol and keto-ols (DOXI) and the alcohol preservation index (API) whereby the former seems to be the most promising.
Resumo:
This study analyzes coccolithophore abundance fluctuations (e.g., Emiliania huxleyi, Gephyrocapsa specimens, and Florisphaera profunda) in core MD01-2444 sediment strata retrieved at the Iberian Margin, northeastern Atlantic Ocean. Coccolithophores are calcareous nannofossils, a major component of the oceanic phytoplankton, which provide information about past ecological and climatological variability. Results are supported by data on fossil organic compounds (sea surface temperatures, alkenones, and n-hexacosan-1-ol index) and geochemical analyses (benthic d13Ccc and planktonic d18Occ isotopes). Three scenarios are taken into account for this location at centennial-scale resolution over the last 70,000 years: the Holocene and the stadial and interstadial modes. The different alternatives are described by means of elements such as nutrients; upwelling phenomena; temperatures at surface and subsurface level; or the arrival of surface turbid, fresh, and cold waters due to icebergs, low sea level, increased aridity, and dust. During the Holocene, moderate primary productivity was observed (mainly concentrated in E. huxleyi specimens); surface temperatures were at maxima while the water column was highly ventilated by northern-sourced polar deep waters and warmer subsurface, nutrient-poor subtropical waters. Over most of the last glacial stadials, surface productivity weakened (higher F. profunda and reworked specimen percentages and lower diunsaturated and triunsaturated C37 alkenones); the arrival of cold Arctic surface waters traced by tetraunsaturated C37 peaks and large E. huxleyi, together with powerful ventilated southern-sourced polar deep waters, disturbed, in all likelihood, the delicate vertical equilibrium while preventing significant upwelling mixing. Finally, during the last glacial interstadials (lower F. profunda percentages, nonreworked material, and higher diunsaturated and triunsaturated C37 alkenones) a combined signal is observed: warm surface temperatures were concurrent with generally low oxygenation of the deep-sea floor, moderate arrival of northern-sourced deep waters, and subsurface cold, nutrient-rich, recently upwelled waters, probably of polar origin; these particular conditions may have promoted vertical mixing while enhancing surface primary productivity (mainly of Gephyrocapsa specimens).
Resumo:
Sannai-Maruyama is one of the most famous and best-researched mid-Holocene (mid-Jomon) archaeological sites in Japan, because of a large community of people for a long period. Archaeological studies have shown that the Jomon people inhabited the Sannai-Maruyama site from 5.9-4.2 +/- 0.1 cal. kyr B.P. However, a continuous record of the terrestrial and marine environments around the site has not been available. Core KT05-7 PC-02, was recovered from Mutsu Bay, only 20 km from the site, for the reconstruction of high-resolution time series of environmental records, including sea surface temperature (SST). C37 alkenone SSTs showed clear fluctuations, with four periods of high (8.4-7.9, 7.0-5.9, 5.1-4.1, and 2.3-1.4 cal. kyr B.P.) and four of low (-8.4, 7.9-7.0, 5.9-5.1, and 4.1-2.3 cal. kyr B.P.) SST. Thus, each SST cycle lasted 1.0-2.0 kyr, and the amplitude of fluctuation was about 1.5-2.0 °C. Total organic carbon (TOC) and C37 alkenone contents, and the TOC/total nitrogen ratio indicate that marine biogenic production was low before 7.0 cal. kyr B.P., but was clearly increased between 5.9 and 4.0 cal. kyr B.P., because of stronger vertical mixing. During the period when the community at the site prospered (between 5.9 and 4.2 +/- 0.1 cal. kyr B.P.), the terrestrial climate was relatively warm. The high relative abundance of pollen of both Castanea and Quercus subgen. Cyclobalanopsis supports the interpretation that the local climate was optimal for human habitation. Between 5.9 and 5.1 cal. kyr B.P., in spite of warm terrestrial climates, the C37 alkenone SST was low; this apparent discrepancy may be attributed to the water column structure in the Tsugaru Strait, which differed from the modern condition. The evidence suggests that at about 5.9 cal. kyr B.P, high productivity of marine resources such as fish and shellfish and a warm terrestrial climate led to the establishment of a human community at the Sannai-Maruyama site. Then, at about 4.1 +/- 0.1 cal. kyr B.P., abrupt marine and terrestrial cooling, indicated by a decrease of about 2 °C in the C37 alkenone SST and an increase in pollen of taxa of cooler climates, led to a reduced terrestrial food supply, causing the people to abandon the site. The timing of the abandonment is consistent with the timing (around 4.0-4.3 cal. kyr B.P.) of the decline of civilizations in north Mesopotamia and along the Yangtze River. These findings suggest that a temperature rise of ~2 °C in this century as a result of global warming could have a great impact on the human community and especially on agriculture, despite the advances of contemporary society.
Resumo:
Surface sediments from the eastern South Atlantic were investigated for their lipid biomarker contents and bulk organic geochemical characteristics to identify sources, transport pathways and preservation processes of organic components. The sediments cover a wide range of depositional settings with large differences in mass accumulation rates. The highest marine organic carbon (OC) contributions are detected along the coast, especially underlying the Benguela upwelling system. Terrigenous OC contributions are highest in the Congo deep-sea fan. Lipid biomarker fluxes are significantly correlated to the extent of oxygen exposure in the sediment. Normalization to total organic carbon (TOC) contents enabled the characterization of regional lipid biomarker production and transport mechanisms. Principal component analyses revealed five distinct groups of characteristic molecular and bulk organic geochemical parameters. Combined with information on lipid sources, the main controlling mechanisms of the spatial lipid distributions in the surface sediments are defined, indicating marine productivity related to river-induced mixing and oceanic upwelling, wind-driven deep upwelling, river-supply of terrigenous organic material, shallow coastal upwelling and eolian supply of plant-waxes.
Resumo:
During the six Heinrich Events of the last 70 ka episodic calving from the circum-Atlantic ice sheets released large numbers of icebergs into the North Atlantic. These icebergs and associated melt-water flux are hypothesized to have led to a shutdown of Atlantic Meridional Overturning Circulation (AMOC) and severe cooling in large parts of the Northern Hemisphere. However, due to the limited availability of high-resolution records the magnitude sea surface temperature (SST) changes related to the impact of Heinrich Events on the mid-latitude North Atlantic is poorly constrained. Here we present a record of UK37'-based SSTs derived from sediments of Integrated Ocean Drilling Project (IODP) Site U1313, located at the southern end of the ice-rafted debris (IRD)-belt in the mid-latitude North Atlantic (41°N). We demonstrate that all six Heinrich Events are associated with a rapid warming of surface waters by 2 to 4°C in a few thousand years. The presence of IRD leaves no doubt about the simultaneous timing and correlation between rapid surface water warming and Heinrich Events. We argue that this warming in the mid-latitude North Atlantic is related to a northward expansion of the subtropical gyre during Heinrich Events. As a wide-range of studies demonstrated that in the central IRD-belt Heinrich Events are associated with low SSTs, these results thus identify an anti-phased (seesaw) pattern in SSTs during Heinrich Events between the mid-latitude (warm) and northern North Atlantic (cold). This highlights the complex response of surface water characteristics in the North Atlantic to Heinrich Events that is poorly reproduced by fresh water hosing experiments and challenges the widely accepted view that within the IRD-belt of the North Atlantic Heinrich Events coincide with periods of low SSTs.
Resumo:
Samples of filtered particulate organic matter (POM) were obtained during the summers of 1999 and 2000 from the surface waters of the Nordic seas to monitor the spatial distribution of long-chain alkenones. The aim of the study was to appraise existing alkenone-based climatic proxies in northern high latitudes. Unusually high percentages of the tetraunsaturated alkenone were measured in the polar waters of the East Greenland Current, with C37:4 of up to 77% in 80% of sea-ice cover. Values of percent C37:4 across the Nordic seas showed a strong association with water mass type. Analysis of coccoliths in filters indicated that calcified Emiliania huxleyi could not be discounted as the biological precursor of alkenones in all the water masses. A combined data set of 69 samples of POM revealed a stronger correlation of percent C37:4 to sea surface salinity (SSS; R2 = 0.72) than to sea surface temperature (SST; R2 = 0.50). Values of percent C37:4 in sea surface POM were much higher than those in surficial sediments of the northern North Atlantic. To explain the discrepancy in sedimentary and surface water column percent C37:4, we propose that the alkenone contents in surface sediments underlying arctic and polar waters are a combination of autochthonous and allochthonous inputs of alkenones. Our results show that percent C37:4 can be used to reconstruct the relative extension of arctic/polar water masses in the North Atlantic. However, the results prevent confirmation of percent C37:4 as a paleo-SSS proxy in the Nordic seas, given its multivariate nature in our data set and the decoupling between its range of values in surface waters and sediments.
Resumo:
High resolution reconstructions of sea surface temperature (Uk'37-SST), coccolithophore associations and continental input (total organic carbon, higher plant n-alkanes, n-alkan-1-ols) in core D13882 from the shallow Tagus mud patch are compared to SST records from deep-sea core MD03-2699 and other western Iberian Margin cores. Results reveal millennial-scale climate variability over the last deglaciation, in particular during the LGIT. In the Iberian margin, Heinrich event 1 (H1) and the Younger Dryas (YD) represent two extreme episodes of cold sea surface condition separated by a marine warm phase that coincides with the Bølling-Allerød interval (B-A) on the neighboring continent. Following the YD event, an abrupt sea surface warming marks the beginning of the Holocene in this region. SSTs recorded in core D13882 changed, however, faster than those at deep-sea site MD03-2699 and at the other available palaeoclimate sequences from the region. While the SST values from most deep-sea cores reflect the latitudinal gradient detected in the Iberian Peninsula atmospheric temperature proxies during H1 and the B-A, the Tagus mud patch (core D13882) experienced colder SSTs during both events. This is most certainly related to a supplementary input of cold freshwater from the continent to the Tagus mud patch, a hypothesis supported by the high contents of terrigenous biomarkers and total organic carbon as well as by the dominance of tetra-unsaturated alkenone (C37:4) observed at this site. The comparison of all western Iberia SST records suggests that the SST increase that characterizes the B-A event in this region started 1000 yr before meltwater pulse 1A (mwp-1A) and reached its maximum values during or slightly after this episode of substantial sea-level rise. In contrast, during the YD/ Holocene transition, the sharp SST rise in the Tagus mud patch is synchronous with meltwater pulse IB. The decrease of continental input to the mud patch conflrms a sea level rise in the region. Thus, the synchronism between the maximum warming in the mid-latitudes off the western Iberian margin, the adjacent landmasses and Greenland indicates that mwp-lB and the associated sea-level rise probably initiated in the Northern Hemisphere rather than in the South.
Resumo:
ODP Leg 198 drilling on Shatsky Rise recovered a lower Aptian porcellanite (~120.5 Ma) deposited during oceanic anoxic event (OAE) 1a that contains C36-C39 alkadienones: C37:2 and C39:2 alkadien-2-ones and C36:2 and C38:2 alkadien-3-ones. This alkenone distribution differs from that typical of contemporary sediments and haptophyte algae, but resembles that of Cretaceous sediments from the Blake-Bahama basin. The discovery of alkenones in the early Aptian extends their sedimentary record by 15 M.y. to 120.5 M.y. and demonstrates the potential for long-term survival of these diagnostic functional lipids under favorable depositional conditions and subsequent shallow burial. It also contributes to the understanding and reconstruction of evolutionary developments in alkenone distributions and biosynthesis over geologic time.
Resumo:
Hudson Strait (HS) Heinrich Events, ice-rafting events in the North Atlantic originating from the Laurentide ice sheet (LIS), are among the most dramatic examples of millennial-scale climate variability and have a large influence on global climate. However, it is debated as to whether the occurrence of HS Heinrich Events in the (eastern) North Atlantic in the geological record depends on greater ice discharge, or simply from the longer survival of icebergs in cold waters. Using sediments from Integrated Ocean Drilling Program (IODP) Site U1313 in the North Atlantic spanning the period between 960 and 320 ka, we show that sea surface temperatures (SSTs) did not control the first occurrence of HS Heinrich(-like) Events in the sedimentary record. Using mineralogy and organic geochemistry to determine the characteristics of ice-rafting debris (IRD), we detect the first HS Heinrich(-like) Event in our record around 643 ka (Marine Isotope Stage (MIS) 16), which is similar as previously reported for Site U1308. However, the accompanying high-resolution alkenone-based SST record demonstrates that the first HS Heinrich(-like) Event did not coincide with low SSTs. Thus, the HS Heinrich(-like) Events do indicate enhanced ice discharge from the LIS at the end of the Mid-Pleistocene Transition, not simply the survivability of icebergs due to cold conditions in the North Atlantic.
Resumo:
Six samples from Sites 1219 and 1221 ranging in age from early Eocene to early Oligocene were analyzed for freely extractable lipids to determine whether the low organic carbon (Corg) sediments of the Eocene equatorial Pacific (Corg content typically 0.03%) are appropriate for biomarker studies. Only one sample from the Oligocene equatorial Pacific (Sample 199-1219A-13H-3, 50-54 cm) contained any biomarkers of interest to paleoceanography. The only lipids identified in the remaining samples appear to be contaminants from drilling or subsequent handling. Sample 199-1219A-13H-3, 50-54 cm, contained alkenone biomarkers specific to haptophyte algae that are used for estimating past mean annual sea-surface temperature (maSST). If the Holocene calibration of maSST is appropriate for the Oligocene, the estimated equatorial temperature is >=28.3°C, or at least 3°C warmer than modern equatorial maSST at a similar longitude.
Resumo:
Assessment of changes in surface ocean conditions, in particular, sea-surface temperature (SST), is essential to understand long-term changes in climate especially in regions where continental climate is strongly influenced by oceanographic processes. To evaluate changes in SST in the northeast Pacific, we have analyzed long-chain alkenones of prymnesiophyte origin at 38 depths in a piston and associated trigger core collected beneath the contemporary core of the California Current System at 42°N, ~270 km off the coast of Oregon/California. The samples span 30,000 years of deposition at this location. Unsaturation patterns (UK'37) in the alkenone series display a statistically significant difference (p <<0.001) between interglacial (0.44 ± 0.02, n = 11) and glacial (0.29 ± 0.04, n = 20) intervals of the cores. Detailed examination of other compositional features of the C37, C38, C39 alkenone series and a related C36 alkenoate series measured downcore suggests the published UK'37 - temperature calibration (UK'37 = 0.034 * T + 0.039 ) , defined for cultures of a strain of Emiliania huxleyi isolated from the subarctic Pacific, provides best estimates of winter SST at our study site. This inference is purely statistical and does not imply, however, that the phytoplankton source of these biomarkers is most productive in winter or at the ocean surface. The temperature record for UK'37 implies (1) an ~4°C shift occurred in winter SST from ~7.5 ± 1.1°C at the last glacial maximum to ~11.7 ± 0.7°C in the present interglacial period, and (2) this warming trend was confined to the time frame 14-10 Ka within the glacial to interglacial transition period. These conclusions are corroborated entirely by results from an independent SST transformation of radiolarian species assemblage data obtained from the same core materials.
Resumo:
Various types of abrupt/millennial-scale climate variability such as Dansgaard/Oeschger and Heinrich Events characterized the last glacial period. Over the last decade, a number of studies demonstrated that such millennial-scale climate variability was not limited to the last glacial but inherent to Quaternary climate. Here we review the occurrence and origin of millennial ice-rafting events in the North Atlantic during the late Pliocene and Pleistocene (last 3.4 Ma) with a special focus on North Atlantic Hudson Strait (HS) Heinrich(-like) Events. Besides a clear biomarker signature, we show that Heinrich Layers 5, 4, 2, and 1 in marine sediment cores from across the North Atlantic all bear the organic geochemical fingerprint of the Hudson area. Using this framework and combining previously published results, detailed investigations into the organic and inorganic chemistry of ice-rafted debris (IRD) found across the North Atlantic demonstrate that prior to MIS 16 (~ 650 ka) IRD in the North Atlantic did not originate from the Hudson area of northern Canada. The signature of this early IRD is distinctly different compared to that of HS Heinrich Layers. Rather ice-rafting events during the late Pliocene and early Pleistocene predominantly emanated from the calving of the Greenland and Fennoscandian ice sheets and possibly minor contributions from local ice streams from the North American and British ice sheets. Compared to North Atlantic HS Heinrich Events, these early Pleistocene IRD-events had a limited impact on surface water characteristics in the North Atlantic. North Atlantic HS Heinrich(-like) Events first occurred during MIS 16. At the same time, the dominant frequency in silicate-rich IRD accumulation shifted from the obliquity (41-ka) to a 100-ka frequency across the North Atlantic. Iceberg survivability or a change in iceberg trajectory likely did not control this change in IRD-regime. These results lend further support for the existing hypothesis that an increase in size (thickness) of the Laurentide ice sheet controls the occurrence of North Atlantic HS Heinrich Events, favoring an internal dynamic mechanism for their occurrence.
Resumo:
We compared ocean atlas values of surface water [PO4]3- and [CO2(aq)] against the carbon isotopic fractionation (ep) of alkenones obtained from surface sediments of the South Atlantic and the central Pacific (Pacific data are from Pagani et al. 2002, doi:10.1029/2002PA000756). We observed a positive correlation between ep and 1/[CO2(aq)], which is opposite of what would be expected if the concentration of CO2(aq) were the major factor controlling the carbon isotopic fractionation of C37:2 alkenones. Instead, we found inverse relationships between ep and [PO4]3- for the two ocean basins (for the Atlantic, ep = -4.6*[PO4]3- + 15.1, R = 0.76; for the Pacific, ep = -4.1*[PO4]3- + 13.7, R = 0.64), suggesting that ep is predominantly controlled by growth rate, which in turn is related to nutrient concentration. The similarity of the slopes implies that a general relationship between both parameters may exist. Using the relationship obtained from the South Atlantic, we estimated surface water nutrient concentrations for the past 200,000 years from a deep-sea sediment core recovered off Angola. Low ep values, indicating high nutrient concentrations, coincide with high contents of total organic carbon and C37 alkenones, low surface water temperatures, and decreased bulk d15N values, suggesting an increased upwelling of nutrient-rich cool subsurface waters as the main cause for the observed ep decrease.
Resumo:
Sea surface temperatures (SSTs) derived from the alkenone UK'37) record of Quaternary sediments may be subject to bias if algae with different temperature sensitivities have contributed to the sedimentary alkenone record. The alkenone-derived SST records are usually based on a UK'37-temperature relationship which was measured in culture experiments using the coccolithophorid Emiliania huxleyi (F.G. Prahl, L.A. Muehlhausen and D.L. Zahnle, 1988. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim. Cosmochim. Acta 52, 2303-2310). To assess possible effects of past species changes on the UK'37-temperature signal, we have analyzed long-chain alkenones and coccolithophorids in a late Quaternary sediment core from the Walvis Ridge and compared the results to SST estimates extracted from the d18O record of the planktonic foraminifer Globigerinoides ruber. Alkenones and isotopes were determined over the entire 400-kyr core record while the coccolithophorid study was confined to the last 200 kyr when the most pronounced changes in alkenone content occurred. Throughout oxygen-isotope stages 6 and 5, species of the genus Gephyrocapsa were the predominating coccolithophorids. E. huxleyi began to increase systematically in relative abundance since the stage 5/4 transition, became dominant over Gephyrocapsa spp. during stage 3 and reached the highest abundances in the Holocene. Carbon-normalized alkenone concentrations are inversely related to the relative abundances of E. huxleyi, and directly related to that of Gephyrocapsa spp., suggesting that species of this genus were the principal alkenone contributors to the sediments. Nevertheless, SST values obtained from the UK'37-temperature relationship for E. huxleyi compare favourably to the isotope-derived temperatures. The recently reported UK'37-temperature relationship for a single strain of Gephyrocapsa oceanica (J.K. Volkman. S.M. Barrett, S.I. Blackburn and E.L. Sikes, 1995. Alkenones in Gephyrocapsa oceanica: Implications for studies of paleoclimate. Geochim. Cosmochim. Acta 59, 513-520) produces unrealistically high SST values indicating that the temperature response of the examined strain is not typical for the genus Gephyrocapsa. This is supported by the C37:C38, alkenone ratios of the sediments which are comparable to average ratios reported for E. huxleyi, but significantly higher than for the G. oceanica strain. Most notably, the general accordance of the alkenone characteristics between sediments and E. huxleyi persists through stages 8 to 5 and even in times that predate the first appearance of this species (268 ka; H.R. Thierstein, K.R. Geitzenauer and B. Molfino, 1977. Global synchroneity of late Quaternary coccolith datum levels: Validation by oxygen isotopes. Geology 5, 400-404). Our results suggest that UK'37-temperature relationships based on E. huxleyi produce reasonable paleo-SST estimates even for late Quaternary periods when this species was scarce or absent because other alkenone-synthesizing algae, e.g. of the genus Gephyrocapsa.