1000 resultados para Algoritmo Genético


Relevância:

60.00% 60.00%

Publicador:

Resumo:

As Redes de Sensores Sem Fio possuem capacidades limitadas de processamento, armazenamento, comunicação (largura de banda) e fonte de energia, além de possuírem características e requisitos básicos de uma RSSF como: necessidade de se auto-organizar, comunicação com difusão de curto alcance e roteamento com múltiplos saltos. Neste trabalho é proposto uma ferramenta que otimize o posicionamento e os pacotes entregues através do uso de Algoritmo Genético (AG). Para solucionar o problema de roteamento que melhore o consumo de energia e maximize a agregação de dados é proposto a utilização de lógica fuzzy no protocolo de roteamento Ad hoc Ondemand Distance Vector (AODV). Esta customização é intitulada AODV – Fuzzy for Wireless Sensor Networks (AODV-FWSN). Os resultados mostram que a solução proposta é eficiente e consegue prolongar a vida útil da RSSF e melhorar a taxa de entrega de dados quando comparado com soluções similares.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diversas atividades de planejamento e operação em sistemas de energia elétrica dependem do conhecimento antecipado e preciso da demanda de carga elétrica. Por este motivo, concessionárias de geração e distribuição de energia elétrica cada vez mais fazem uso de tecnologias de previsão de carga. Essas previsões podem ter um horizonte de curtíssimo, curto, médio ou longo prazo. Inúmeros métodos estatísticos vêm sendo utilizados para o problema de previsão. Todos estes métodos trabalham bem em condições normais, entretanto deixam a desejar em situações onde ocorrem mudanças inesperadas nos parâmetros do ambiente. Atualmente, técnicas baseadas em Inteligência Computacional vêm sendo apresentadas na literatura com resultados satisfatórios para o problema de previsão de carga. Considerando então a importância da previsão da carga elétrica para os sistemas de energia elétrica, neste trabalho, uma nova abordagem para o problema de previsão de carga via redes neurais Auto-Associativas e algoritmos genéticos é avaliada. Três modelos de previsão baseados em Inteligência Computacional são também apresentados tendo seus desempenhos avaliados e comparados com o sistema proposto. Com os resultados alcançados, pôde-se verificar que o modelo proposto se mostrou satisfatório para o problema de previsão, reforçando assim a aplicabilidade de metodologias de inteligência computacional para o problema de previsão de cargas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta dissertação apresenta uma metodologia baseada em algoritmo genético (AG) para determinar modelos dinâmicos equivalentes de parques eólicos com geradores de indução em gaiola de esquilo ( GIGE) e geradores de indução duplamente alimentados ( GIDA), apresentando parâmetros elétricos e mecânicos distintos. A técnica se baseia em uma formulação multiobjetiva solucionada por um AG para minimizar os erros quadráticos das potências ativa e reativa entre modelo de um único gerador equivalente e o modelo do parque eólico investigado. A influência do modelo equivalente do parque eólico no comportamento dinâmico dos geradores síncronos é também investigada por meio do método proposto. A abordagem é testada em um parque eólico de 10MW composto por quatro turbinas eólicas ( 2x2MW e 2x3MW), consistindo alternadamente de geradores GIGE e GIDA interligados a uma barra infinita e posteriormente a rede elétrica do IEEE 14 barras. Os resultados obtidos pelo uso do modelo dinâmico detalhado para a representação do parque eólico são comparados aos do modelo equivalente proposto para avaliar a precisão e o custo computacional do modelo proposto.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho apresenta uma modelagem paramétrica (auto-regressiva) linear aplicável a estudos de propagação de televisão digital e telefonia celular para cidades densamente arborizadas. A modelagem proposta apresenta um forte embasamento estatístico e depende apenas de dados provenientes de medição, no caso dados relativos a potência recebida e o valor de PSNR (Peak Signal-to-Noise Ratio). Um algoritmo genético é utilizado no cálculo dos parâmetros de ajuste do modelo a um conjunto de dados. O trabalho foi realizado na faixa de televisão digital e foram analisadas duas variáveis: a potência recebida do sinal e o valor de PSNR. Foram executadas campanhas de medição na cidade de Belém. Nestas medições foram coletados dados de potência e gravados vídeos da programação diária de uma emissora de televisão. Os resultados podem ser aplicados no planejamento de serviços de telecomunicações.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O sistema WDM (Wavelength Division Multiplexing) é considerado como uma tecnologia madura para ser usada no backbone de redes ópticas. Entretanto, encontrar uma solução ótima para o algoritmo de atribuição de comprimento de onda no projeto e operação destas redes, ainda é uma questão em aberto. A pesquisa realizada nesta tese aborda os principais aspectos relacionados ao processo de atribuição de comprimento de onda em sistemas WDM, e como resultado foi proposta uma metodologia que minimiza a degradação do sinal óptico gerada pela modulação de fase cruzada (XPM – Cross-Phase Modulation). Esta proposta é composta por uma metodologia híbrida baseada em Coloração de Grafo e Algoritmo Genético (AG), sendo que o primeiro tem a função de reduzir o número de comprimentos de onda necessários para atender a matriz de tráfego (que é fornecida a priori) e o último tem a função de encontrar a ordem de ativação de canais na grade de comprimentos de onda, com o objetivo de reduzir o efeito XPM. A proposta foi comparada com o algoritmo First-Fit em diferentes cenários e topologias de redes, e demonstrou uma considerável redução na probabilidade de bloqueio.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Apesar do aumento significativo do uso de redes locais sem fio (WLAN) nos últimos anos, aspectos de projeto e planejamento de capacidade da rede são ainda sistematicamente negligenciados durante a implementação da rede. Tipicamente um projeto de rede local sem fio é feito e instalado por profissionais de rede. Esses profissionais são extremamente experientes com redes cabeadas, mas são ainda geralmente pouco experientes com redes sem fio. Deste modo, as instalações de redes locais sem fio são desvantajosas pela falta de um modelo de avaliação de desempenho e para determinar a localização do ponto de acesso (PA), além disso, fatores importantes do ambiente não são considerados no projeto. Esses fatores se tornam mais importante quando muitos pontos de acesso (PAs) são instalados para cobrir um único edifício, algumas vezes sem planejamento de freqüência. Falhas como essa podem causar interferência entre células geradas pelo mesmo PA. Por essa razão, a rede não obterá os padrões de qualidade de serviço (QoS) exigidos por cada serviço. O presente trabalho apresenta uma proposta para planejamento de redes sem fio levando em consideração a influência da interferência com o auxílio de inteligência computacional tais como a utilização de redes Bayesianas. Uma extensiva campanha de medição foi feita para avaliar o desempenho de dois pontos de acesso (PAs) sobre um cenário multiusuário, com e sem interferência. Os dados dessa campanha de medição foram usados como entrada das redes Bayesianas e confirmaram a influência da interferência nos parâmetros de QoS. Uma implementação de algoritmo genético foi utilizado permitindo uma abordagem híbrida para planejamento de redes sem fio. Como efeito de comparação para otimizar os parâmetros de QoS, de modo a encontrar a melhor distância do PA ao receptor garantindo as recomendações do International Telecomunication Union (ITU-T), a técnica de otimização por enxame de partículas foi aplicada.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta dissertação apresenta um método baseado em algoritmos genéticos para cálculo de equivalentes dinâmicos de sistemas de potência visando representar partes de um sistema para estudos de análise de estabilidade transitória. O modelo do equivalente dinâmico é obtido por meio da identificação de parâmetros de geradores síncronos, localizados nas barras de fronteira entre o sistema externo e o subsistema em estudo. Um indicie é usado para avaliar a proximidade entre as simulações realizadas usando o modelo completo e o modelo reduzido, após serem submetidos a grandes distúrbios no subsistema em estudo. Diferentes condições operacionais foram levadas em conta. As simulações foram realizadas usando os softwares GAOT “The Genetic Algorithm Optimization Toolbox”, ANAREDE e ANATEM. Esse método foi testado no sistema teste duas áreas do Kundur e no Sistema Interligado Nacional (SIN). Os resultados validaram a eficácia do método desenvolvido para o cálculo de equivalentes dinâmicos robustos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we propose a hybrid methodology based on Graph-Coloring and Genetic Algorithm (GA) to solve the Wavelength Assignment (WA) problem in optical networks, impaired by physical layer effects. Our proposal was developed for a static scenario where the physical topology and traffic matrix are known a priori. First, we used fixed shortest-path routing to attend demand requests over the physical topology and the graph-coloring algorithm to minimize the number of necessary wavelengths. Then, we applied the genetic algorithm to solve WA. The GA finds the wavelength activation order on the wavelengths grid with the aim of reducing the Cross-Phase Modulation (XPM) effect; the variance due to the XPM was used as a function of fitness to evaluate the feasibility of the selected WA solution. Its performance is compared with the First-Fit algorithm in two different scenarios, and has shown a reduction in blocking probability up to 37.14% when considered both XPM and residual dispersion effects and up to 71.42% when only considered XPM effect. Moreover, it was possible to reduce by 57.14% the number of wavelengths.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A localização de bancos de capacitores nas redes de distribuição de energia elétrica, corretamente dimensionados, busca compensar eventuais excessos de circulação de potência reativa pelas linhas, o que implica a redução de custos operacionais pela redução das perdas de energia e um aumento da capacidade de transmissão de potência ativa assegurando os níveis estabelecidos de tensão e fator de potência simultaneamente. A proliferação das cargas não lineares provocou uma mudança nos cenários de estudo dos sistemas elétricos de potência devido aos efeitos nocivos que os harmônicos gerados por elas ocasionam sobre a qualidade da energia elétrica. Considerando este novo cenário, esta tese tem como objetivo geral desenvolver uma ferramenta computacional utilizando técnicas de inteligência computacional apoiada em algoritmos genéticos (AG), para a otimização multiobjetivo da compensação da potência reativa em redes elétricas de distribuição capaz de localizar e dimensionar de forma ótima as unidades de compensação necessárias para obter os melhores benefícios econômicos e a manutenção dos índices de qualidade da energia estabelecidos pelas normas brasileiras. Como Inovação Tecnológica do trabalho a ferramenta computacional desenvolvida permite otimizar a compensação da potência reativa para melhorar do fator de potência em redes de distribuição contaminadas com harmônicos que, diferentemente de métodos anteriores, não só emprega bancos de capacitores, mas também filtros de harmônicos com esse objetivo. Utiliza-se o algoritmo NSGA-II, que determina as soluções ótimas de Pareto para o problema e permite ao especialista determinar as soluções mais efetivas. A proposta para a solução do problema apresenta várias inovações podendo-se destacar que a solução obtida permite determinar a compensação de potência reativa com capacitores em sistemas com certa penetração harmônica, atendendo a normas de qualidade de energia pertinentes, com relação aos níveis de distorção harmônica tolerados.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Essa dissertação de mestrado apresenta um estudo comparativo entre três metodologias baseadas em algoritmos genéticos para ajuste coordenado de estabilizadores de sistemas de potência (ESP). Os procedimentos de ajuste do ESP são formulados como um problema de otimização, a fim de: 1) maximizar o coeficiente de amortecimento mínimo do sistema em malha fechada; 2) maximizar o somatório de todos os coeficientes de amortecimento do sistema em malha fechada; e 3) deslocar os modos eletromecânicos poucos amortecidos ou mal amortecidos para uma zona pré-escrita no plano s. As três metodologias consideram um conjunto de condições de operacionais pré-especificadas. O sistema elétrico foi representado por equações no espaço de estado e as matrizes associadas com a modelagem foram obtidas por meio da versão acadêmica do programa PacDyn. As simulações foram realizadas usando o MATLAB. As metodologias foram aplicadas no conhecido sistema teste New England.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Biometria - IBB

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, a mathematical model with temporal dependence for dengue transmission was developed, considering coupling between human population and the vector mosquito, and a sorotype circulating on population. This model was analysed with the goal to explain disease's periodicity. Finally, a genetic algorithm was set up to study model's sensibility.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA