989 resultados para Algorithm Comparison


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since Dymond et al. (1992, doi:10.1029/92PA00181) proposed the paleoproductivity algorithm based on "Bio-Ba", which relies on a strong correlation between Ba and organic carbon fluxes in sediment traps, this proxy has been applied in many paleoproductivity studies. Barite, the main carrier of particulate barium in the water column and the phase associated with carbon export, has also been suggested as a reliable paleoproductivity proxy in some locations. We demonstrate that Ba(excess) (total barium minus the fraction associated with terrigenous material) frequently overestimates Ba(barite) (barium associated with the mineral barite), most likely due to the inclusion of barium from phases other than barite and terrigenous silicates (e.g., carbonate, organic matter, opal, Fe-Mn oxides, and hydroxides). A comparison between overlying oceanic carbon export and carbon export derived from Ba(excess) shows that the Dymond et al. (1992) algorithm frequently underestimates carbon export but is still a useful carbon export indicator if all caveats are considered before the algorithm is applied. Ba(barite) accumulation rates from a wide range of core top sediments from different oceanic settings are highly correlated to surface ocean 14C and Chlorophyll a measurements of primary production. This relationship varies by ocean basin, but with the application of the appropriate f ratio to 14C and Chlorophyll a primary production estimates, the plot of Ba(barite) accumulation and carbon export for the equatorial Pacific, Atlantic, and Southern Ocean converges to a global relationship that can be used to reconstruct paleo carbon export.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Computed Tomography (CT) is one of the standard diagnostic imaging modalities for the evaluation of a patient’s medical condition. In comparison to other imaging modalities such as Magnetic Resonance Imaging (MRI), CT is a fast acquisition imaging device with higher spatial resolution and higher contrast-to-noise ratio (CNR) for bony structures. CT images are presented through a gray scale of independent values in Hounsfield units (HU). High HU-valued materials represent higher density. High density materials, such as metal, tend to erroneously increase the HU values around it due to reconstruction software limitations. This problem of increased HU values due to metal presence is referred to as metal artefacts. Hip prostheses, dental fillings, aneurysm clips, and spinal clips are a few examples of metal objects that are of clinical relevance. These implants create artefacts such as beam hardening and photon starvation that distort CT images and degrade image quality. This is of great significance because the distortions may cause improper evaluation of images and inaccurate dose calculation in the treatment planning system. Different algorithms are being developed to reduce these artefacts for better image quality for both diagnostic and therapeutic purposes. However, very limited information is available about the effect of artefact correction on dose calculation accuracy. This research study evaluates the dosimetric effect of metal artefact reduction algorithms on severe artefacts on CT images. This study uses Gemstone Spectral Imaging (GSI)-based MAR algorithm, projection-based Metal Artefact Reduction (MAR) algorithm, and the Dual-Energy method.

Materials and Methods: The Gemstone Spectral Imaging (GSI)-based and SMART Metal Artefact Reduction (MAR) algorithms are metal artefact reduction protocols embedded in two different CT scanner models by General Electric (GE), and the Dual-Energy Imaging Method was developed at Duke University. All three approaches were applied in this research for dosimetric evaluation on CT images with severe metal artefacts. The first part of the research used a water phantom with four iodine syringes. Two sets of plans, multi-arc plans and single-arc plans, using the Volumetric Modulated Arc therapy (VMAT) technique were designed to avoid or minimize influences from high-density objects. The second part of the research used projection-based MAR Algorithm and the Dual-Energy Method. Calculated Doses (Mean, Minimum, and Maximum Doses) to the planning treatment volume (PTV) were compared and homogeneity index (HI) calculated.

Results: (1) Without the GSI-based MAR application, a percent error between mean dose and the absolute dose ranging from 3.4-5.7% per fraction was observed. In contrast, the error was decreased to a range of 0.09-2.3% per fraction with the GSI-based MAR algorithm. There was a percent difference ranging from 1.7-4.2% per fraction between with and without using the GSI-based MAR algorithm. (2) A range of 0.1-3.2% difference was observed for the maximum dose values, 1.5-10.4% for minimum dose difference, and 1.4-1.7% difference on the mean doses. Homogeneity indexes (HI) ranging from 0.068-0.065 for dual-energy method and 0.063-0.141 with projection-based MAR algorithm were also calculated.

Conclusion: (1) Percent error without using the GSI-based MAR algorithm may deviate as high as 5.7%. This error invalidates the goal of Radiation Therapy to provide a more precise treatment. Thus, GSI-based MAR algorithm was desirable due to its better dose calculation accuracy. (2) Based on direct numerical observation, there was no apparent deviation between the mean doses of different techniques but deviation was evident on the maximum and minimum doses. The HI for the dual-energy method almost achieved the desirable null values. In conclusion, the Dual-Energy method gave better dose calculation accuracy to the planning treatment volume (PTV) for images with metal artefacts than with or without GE MAR Algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Knowledge-based radiation treatment is an emerging concept in radiotherapy. It

mainly refers to the technique that can guide or automate treatment planning in

clinic by learning from prior knowledge. Dierent models are developed to realize

it, one of which is proposed by Yuan et al. at Duke for lung IMRT planning. This

model can automatically determine both beam conguration and optimization ob-

jectives with non-coplanar beams based on patient-specic anatomical information.

Although plans automatically generated by this model demonstrate equivalent or

better dosimetric quality compared to clinical approved plans, its validity and gener-

ality are limited due to the empirical assignment to a coecient called angle spread

constraint dened in the beam eciency index used for beam ranking. To eliminate

these limitations, a systematic study on this coecient is needed to acquire evidences

for its optimal value.

To achieve this purpose, eleven lung cancer patients with complex tumor shape

with non-coplanar beams adopted in clinical approved plans were retrospectively

studied in the frame of the automatic lung IMRT treatment algorithm. The primary

and boost plans used in three patients were treated as dierent cases due to the

dierent target size and shape. A total of 14 lung cases, thus, were re-planned using

the knowledge-based automatic lung IMRT planning algorithm by varying angle

spread constraint from 0 to 1 with increment of 0.2. A modied beam angle eciency

index used for navigate the beam selection was adopted. Great eorts were made to assure the quality of plans associated to every angle spread constraint as good

as possible. Important dosimetric parameters for PTV and OARs, quantitatively

re

ecting the plan quality, were extracted from the DVHs and analyzed as a function

of angle spread constraint for each case. Comparisons of these parameters between

clinical plans and model-based plans were evaluated by two-sampled Students t-tests,

and regression analysis on a composite index built on the percentage errors between

dosimetric parameters in the model-based plans and those in the clinical plans as a

function of angle spread constraint was performed.

Results show that model-based plans generally have equivalent or better quality

than clinical approved plans, qualitatively and quantitatively. All dosimetric param-

eters except those for lungs in the automatically generated plans are statistically

better or comparable to those in the clinical plans. On average, more than 15% re-

duction on conformity index and homogeneity index for PTV and V40, V60 for heart

while an 8% and 3% increase on V5, V20 for lungs, respectively, are observed. The

intra-plan comparison among model-based plans demonstrates that plan quality does

not change much with angle spread constraint larger than 0.4. Further examination

on the variation curve of the composite index as a function of angle spread constraint

shows that 0.6 is the optimal value that can result in statistically the best achievable

plans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Testing for two-sample differences is challenging when the differences are local and only involve a small portion of the data. To solve this problem, we apply a multi- resolution scanning framework that performs dependent local tests on subsets of the sample space. We use a nested dyadic partition of the sample space to get a collection of windows and test for sample differences within each window. We put a joint prior on the states of local hypotheses that allows both vertical and horizontal message passing among the partition tree to reflect the spatial dependency features among windows. This information passing framework is critical to detect local sample differences. We use both the loopy belief propagation algorithm and MCMC to get the posterior null probability on each window. These probabilities are then used to report sample differences based on decision procedures. Simulation studies are conducted to illustrate the performance. Multiple testing adjustment and convergence of the algorithms are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data mining can be defined as the extraction of implicit, previously un-known, and potentially useful information from data. Numerous re-searchers have been developing security technology and exploring new methods to detect cyber-attacks with the DARPA 1998 dataset for Intrusion Detection and the modified versions of this dataset KDDCup99 and NSL-KDD, but until now no one have examined the performance of the Top 10 data mining algorithms selected by experts in data mining. The compared classification learning algorithms in this thesis are: C4.5, CART, k-NN and Naïve Bayes. The performance of these algorithms are compared with accuracy, error rate and average cost on modified versions of NSL-KDD train and test dataset where the instances are classified into normal and four cyber-attack categories: DoS, Probing, R2L and U2R. Additionally the most important features to detect cyber-attacks in all categories and in each category are evaluated with Weka’s Attribute Evaluator and ranked according to Information Gain. The results show that the classification algorithm with best performance on the dataset is the k-NN algorithm. The most important features to detect cyber-attacks are basic features such as the number of seconds of a network connection, the protocol used for the connection, the network service used, normal or error status of the connection and the number of data bytes sent. The most important features to detect DoS, Probing and R2L attacks are basic features and the least important features are content features. Unlike U2R attacks, where the content features are the most important features to detect attacks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper outlines the development of a crosscorrelation algorithm and a spiking neural network (SNN) for sound localisation based on real sound recorded in a noisy and dynamic environment by a mobile robot. The SNN architecture aims to simulate the sound localisation ability of the mammalian auditory pathways by exploiting the binaural cue of interaural time difference (ITD). The medial superior olive was the inspiration for the SNN architecture which required the integration of an encoding layer which produced biologically realistic spike trains, a model of the bushy cells found in the cochlear nucleus and a supervised learning algorithm. The experimental results demonstrate that biologically inspired sound localisation achieved using a SNN can compare favourably to the more classical technique of cross-correlation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper compares three alternative numerical algorithms applied to a nonlinear metal cutting problem. One algorithm is based on an explicit method and the other two are implicit. Domain decomposition (DD) is used to break the original domain into subdomains, each containing a properly connected, well-formulated and continuous subproblem. The serial version of the explicit algorithm is implemented in FORTRAN and its parallel version uses MPI (Message Passing Interface) calls. One implicit algorithm is implemented by coupling the state-of-the-art PETSc (Portable, Extensible Toolkit for Scientific Computation) software with in-house software in order to solve the subproblems. The second implicit algorithm is implemented completely within PETSc. PETSc uses MPI as the underlying communication library. Finally, a 2D example is used to test the algorithms and various comparisons are made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An algorithm based on a Bayesian network classifier was adapted to produce 10-day burned area (BA) maps from the Long Term Data Record Version 3 (LTDR) at a spatial resolution of 0.05° (~5 km) for the North American boreal region from 2001 to 2011. The modified algorithm used the Brightness Temperature channel from the Moderate Resolution Imaging Spectroradiometer (MODIS) band 31 T31 (11.03 μm) instead of the Advanced Very High Resolution Radiometer (AVHRR) band T3 (3.75 μm). The accuracy of the BA-LTDR, the Collection 5.1 MODIS Burned Area (MCD45A1), the MODIS Collection 5.1 Direct Broadcast Monthly Burned Area (MCD64A1) and the Burned Area GEOLAND-2 (BA GEOLAND-2) products was assessed using reference data from the Alaska Fire Service (AFS) and the Canadian Forest Service National Fire Database (CFSNFD). The linear regression analysis of the burned area percentages of the MCD64A1 product using 40 km × 40 km grids versus the reference data for the years from 2001 to 2011 showed an agreement of R2 = 0.84 and a slope = 0.76, while the BA-LTDR showed an agreement of R2 = 0.75 and a slope = 0.69. These results represent an improvement over the MCD45A1 product, which showed an agreement of R2 = 0.67 and a slope = 0.42. The MCD64A1, BA-LTDR and MCD45A1 products underestimated the total burned area in the study region, whereas the BA GEOLAND-2 product overestimated it by approximately five-fold, with an agreement of R2 = 0.05. Despite MCD64A1 showing the best overall results, the BA-LTDR product proved to be an alternative for mapping burned areas in the North American boreal forest region compared with the other global BA products, even those with higher spatial/spectral resolution

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Habitat fragmentation and the consequently the loss of connectivity between populations can reduce the individuals interchange and gene flow, increasing the chances of inbreeding, and the increase the risk of local extinction. Landscape genetics is providing more and better tools to identify genetic barriers.. To our knowledge, no comparison of methods in terms of consistency has been made with observed data and species with low dispersal ability. The aim of this study is to examine the consistency of the results of five methods to detect barriers to gene flow in a Mediterranean pine vole population Microtus duodecimcostatus: F-statistics estimations, Non-Bayesian clustering, Bayesian clustering, Boundary detection and Simple/Partial Mantel tests. All methods were consistent in detecting the stream as a non-genetic barrier. However, no consistency in results among the methods were found regarding the role of the highway as a genetic barrier. Fst, Bayesian clustering assignment test and Partial Mantel test identifyed the highway as a filter to individual interchange. The Mantel tests were the most sensitive method. Boundary detection method (Monmonier’s Algorithm) and Non-Bayesian approaches did not detect any genetic differentiation of the pine vole due to the highway. Based on our findings we recommend that the genetic barrier detection in low dispersal ability populations should be analyzed with multiple methods such as Mantel tests, Bayesian clustering approaches because they show more sensibility in those scenarios and with boundary detection methods by having the aim of detect drastic changes in a variable of interest between the closest individuals. Although simulation studies highlight the weaknesses and the strengths of each method and the factors that promote some results, tests with real data are needed to increase the effectiveness of genetic barrier detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Dendritic Cell algorithm (DCA) is inspired by recent work in innate immunity. In this paper a formal description of the DCA is given. The DCA is described in detail, and its use as an anomaly detector is illustrated within the context of computer security. A port scan detection task is performed to substantiate the influence of signal selection on the behaviour of the algorithm. Experimental results provide a comparison of differing input signal mappings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dendritic cell algorithm (DCA) is an immune-inspired algorithm, developed for the purpose of anomaly detection. The algorithm performs multi-sensor data fusion and correlation which results in a ‘context aware’ detection system. Previous applications of the DCA have included the detection of potentially malicious port scanning activity, where it has produced high rates of true positives and low rates of false positives. In this work we aim to compare the performance of the DCA and of a self-organizing map (SOM) when applied to the detection of SYN port scans, through experimental analysis. A SOM is an ideal candidate for comparison as it shares similarities with the DCA in terms of the data fusion method employed. It is shown that the results of the two systems are comparable, and both produce false positives for the same processes. This shows that the DCA can produce anomaly detection results to the same standard as an established technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As an immune-inspired algorithm, the Dendritic Cell Algorithm (DCA), produces promising performance in the field of anomaly detection. This paper presents the application of the DCA to a standard data set, the KDD 99 data set. The results of different implementation versions of the DCA, including antigen multiplier and moving time windows, are reported. The real-valued Negative Selection Algorithm (NSA) using constant-sized detectors and the C4.5 decision tree algorithm are used, to conduct a baseline comparison. The results suggest that the DCA is applicable to KDD 99 data set, and the antigen multiplier and moving time windows have the same effect on the DCA for this particular data set. The real-valued NSA with contant-sized detectors is not applicable to the data set. And the C4.5 decision tree algorithm provides a benchmark of the classification performance for this data set.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objectives of this thesis are to validate an improved principal components analysis (IPCA) algorithm on images; designing and simulating a digital model for image compression, face recognition and image detection by using a principal components analysis (PCA) algorithm and the IPCA algorithm; designing and simulating an optical model for face recognition and object detection by using the joint transform correlator (JTC); establishing detection and recognition thresholds for each model; comparing between the performance of the PCA algorithm and the performance of the IPCA algorithm in compression, recognition and, detection; and comparing between the performance of the digital model and the performance of the optical model in recognition and detection. The MATLAB © software was used for simulating the models. PCA is a technique used for identifying patterns in data and representing the data in order to highlight any similarities or differences. The identification of patterns in data of high dimensions (more than three dimensions) is too difficult because the graphical representation of data is impossible. Therefore, PCA is a powerful method for analyzing data. IPCA is another statistical tool for identifying patterns in data. It uses information theory for improving PCA. The joint transform correlator (JTC) is an optical correlator used for synthesizing a frequency plane filter for coherent optical systems. The IPCA algorithm, in general, behaves better than the PCA algorithm in the most of the applications. It is better than the PCA algorithm in image compression because it obtains higher compression, more accurate reconstruction, and faster processing speed with acceptable errors; in addition, it is better than the PCA algorithm in real-time image detection due to the fact that it achieves the smallest error rate as well as remarkable speed. On the other hand, the PCA algorithm performs better than the IPCA algorithm in face recognition because it offers an acceptable error rate, easy calculation, and a reasonable speed. Finally, in detection and recognition, the performance of the digital model is better than the performance of the optical model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tropical Rainfall Measuring Mission (TRMM) rainfall retrieval algorithms are evaluated in tropical cyclones (TCs). Differences between the Precipitation Radar (PR) and TRMM Microwave Imager (TMI) retrievals are found to be related to the storm region (inner core vs. rainbands) and the convective nature of the precipitation as measured by radar reflectivity and ice scattering signature. In landfalling TCs, the algorithms perform differently depending on whether the rainfall is located over ocean, land, or coastal surfaces. Various statistical techniques are applied to quantify these differences and identify the discrepancies in rainfall detection and intensity. Ground validation is accomplished by comparing the landfalling storms over the Southeast US to the NEXRAD Multisensor Precipitation Estimates (MPE) Stage-IV product. Numerous recommendations are given to algorithm users and developers for applying and interpreting these algorithms in areas of heavy and widespread tropical rainfall such as tropical cyclones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dedicated algorithm for sparse spectral representation of music sound is presented. The goal is to enable the representation of a piece of music signal as a linear superposition of as few spectral components as possible, without affecting the quality of the reproduction. A representation of this nature is said to be sparse. In the present context sparsity is accomplished by greedy selection of the spectral components, from an overcomplete set called a dictionary. The proposed algorithm is tailored to be applied with trigonometric dictionaries. Its distinctive feature being that it avoids the need for the actual construction of the whole dictionary, by implementing the required operations via the fast Fourier transform. The achieved sparsity is theoretically equivalent to that rendered by the orthogonal matching pursuit (OMP) method. The contribution of the proposed dedicated implementation is to extend the applicability of the standard OMP algorithm, by reducing its storage and computational demands. The suitability of the approach for producing sparse spectral representation is illustrated by comparison with the traditional method, in the line of the short time Fourier transform, involving only the corresponding orthonormal trigonometric basis.