999 resultados para Algal growth
Resumo:
Here we report recombinant expression and activity of the Saccharomyces cerevisiae type 2 diacylglycerol acyltransferase DGA1 functioning in parallel with the native Nannochloropsis salina genes. Expression of DGA1 shifted the chain length distribution of fatty acids produced and reflected an oleoyl-CoA substrate preference. Effect on the total FAME content was moderate and elevated by a maximum of 38%. Expression of the DGA1 transgene varied throughout the culture life cycle and evidence of growth dependent environmental silencing of the transgene was observed. This is to our knowledge the first example of silencing and subsequent resetting in a transgenic microalga. Results from this study add valuable insights into the efficacy of algal genetic engineering and use of these microorganisms as bio-platforms for chemical manufacture.
Resumo:
Here we report recombinant expression and activity of the Saccharomyces cerevisiae type 2 diacylglycerol acyltransferase DGA1 functioning in parallel with the native Nannochloropsis salina genes. Expression of DGA1 shifted the chain length distribution of fatty acids produced and reflected an oleoyl-CoA substrate preference. Effect on the total FAME content was moderate and elevated by a maximum of 38%. Expression of the DGA1 transgene varied throughout the culture life cycle and evidence of growth dependent environmental silencing of the transgene was observed. This is to our knowledge the first example of silencing and subsequent resetting in a transgenic microalga. Results from this study add valuable insights into the efficacy of algal genetic engineering and use of these microorganisms as bio-platforms for chemical manufacture.
Resumo:
Effect of environmental factors on the growth of the Chlorella vulgaris was studied. C. vulgaris was cultivated in sterilized natural seawater enriched with F/2-Si medium. Then grow in bucket, tub and photobioreactor (PBR) in outdoor condition. The daily routine work consisted of culture checkups of optical density, biomass gains, atmosphere lux, culture lux, atmosphere temperature and culture temperature were recorded. The highest biomass yields were (3.0 μg/ml-1) in December and (2.01 μg/ml-1) in November in PBR. The highest deviation was in atmosphere lux in time 8:30 (± 117.7) and lowest deviation was in atmosphere temperature in time 15:00 (± 1.0499). Optical density (OD) indicated that the best growth of C. vulgaris in outdoor condition was obtained in 650 lux and also it increased with increasing amount of lux. Tub report of C. vulgaris showed different growing behaviors at the various concentration of light and at the different temperatures. Algal production in outdoor PBR is relatively inexpensive, but is only suitable for a few, fast-growing specie. Finally, this fact is noteworthy that in outdoor conditions, temperature and light have important role in growth of C. vulgaris in present study.
Resumo:
An ability to predict population dynamics of the amphipod Diporeia is important in understanding how energy pathways in the Lake Superior food web might be altered by disturbances to the ecosystem. Estimating growth rates for this prominent prey item for fish requires information on the physiological effects of changes to its environment. These effects have been investigated for Diporeia in other Great Lakes, but little is known about Lake Superior populations. The primary objective of this study is to obtain quantitative data for rates of Diporeia respiration and consumption that can be incorporated into a bioenergetics model for Lake Superior. Benthic communities in Lake Superior were sampled bimonthly from April through September during 2011 and 2012 to investigate spatial and temporal trends of Diporeia abundances as well as size class structures of the population. Additional samples of Diporeia were collected and kept alive in natural sediment for laboratory experiments. Respiration rates for Diporeia were measured by monitoring dissolved oxygen concentrations in microcosoms using microelectrodes. Additionally, a series of experiments to estimate consumption rates based on food availability were conducted using 14C-labeled algae (Selenastrum capricornutum). Amphipod population densities are highest between 30-110 m (slope) compared to 0-30 m (shelf) or >110 m (profundal) regions in Lake Superior. This heterogeneous distribution of Diporeia in Lake Superior is an important component to quantifying lake-wide biomass. Rates of oxygen consumption by Diporeia range from 32.0 to 44.7 mgO2*gDW-1*d-1, and do not vary significantly with body size per individual. The predicted consumption rate corresponding to average Lake Superior algal carbon fluxes was 0.08 ± SE mgC*gDW-1*d-1. Data on Lake Superior Diporeia biomass and bioenergetics found in this study can be incorporated in a model used to estimate the viability of this population under potential future environmental stressors.
Resumo:
Coral reefs can exist as coral- and macroalgae-dominated habitats often separated by only a few hundred metres. While herbivorous fish are known to depress the abundance of algae and help maintain the function of coral-dominated habitats, less is known about their influence in algae-dominated habitats. Here, we quantified herbivorous fish and benthic algal communities over a 6 mo period in coral-dominated (back-reef) and algal-dominated (lagoon) habitats in a relatively undisturbed fringing coral reef (Ningaloo, Western Australia). Simulta - neously, we tested the effects of herbivorous fish on algal recruitment in both habitats using recruitment tiles and fish exclusion cages. The composition of established algal communities differed consistently between habitats, with the back-reef hosting a more diverse community than the Sargassum-dominated lagoon. However, total algal biomass and cover only differed between habitats in autumn, coinciding with maximum Sargassum biomass. The back-reef hosted high coral cover and a diverse herbivorous fish community, with herbivore biomass an order of magnitude greater than the lagoon. Despite these differences in herbivore composition, exclusion of large herbivores had a similar positive effect to foliose macroalgae recruitment on experimental tiles in both back-reef and lagoon habitats. Additionally, territorial damselfish found in the backreef increased turf algae cover and decreased crustose coralline algae cover on recruitment tiles. Collectively, our results show that disparate herbivorous fish communities in coral- and algaedominated habitats are similarly able to limit the recruitment of foliose macroalgae, but suggest that when herbivorous fish biomass and diversity are relatively low, macroalgal communities are able to escape herbivore control through increased growth.
Resumo:
Pollicipes pollicipes (Crustacea: Scalpelliformes) is a highly prized food in Portugal and Spain and con- sequently a species of considerable interest to aqua- culture. Surprisingly, however, larval culture conditions for this barnacle have not been opti- mized. This study investigated the effects of temper- ature, diet, photoperiod and salinity on the growth and survival of P. pollicipes larvae. Temperature had a significant effect on specific growth rate (2.6–5.9% total width per day, from 11 to 24°C), reducing mean development time to the cyprid from 25 days at 11 °C to 10 days at 24°C, although this was accompanied by a significant increase in mortality to over 90% above 22°C. Mid- range temperatures (15–20°C) maximized total survival (19–31% respectively). Algal diets of Tetra- selmis suecica, T. suecica/Skeletonema marinoi and S. marinoi/Isochrysis galbana did not affect specific growth rate significantly, but survival (on average 39% in 15 days) and the proportion of high-quality healthy cyprids was significantly higher on the lat- ter two diets (11–15% of initial number of larvae). Photoperiod did not significantly affect the survival, although specific growth rate was significantly higher at 24:0 and 16:8 L:D. Salinity (20– 40 g L 1 range) did not affect growth and survival significantly. The best growth and survival were accomplished using rearing temperatures of 15–20°C, daily feeding with T. suecica/S. marinoi or I. galbana/S. marinoi and a photoperiod of 24:0 L:D.
Resumo:
In this study, we investigated the effect of low density lipoprotein receptor (LDLr) deficiency on gap junctional connexin 36 (Cx36) islet content and on the functional and growth response of pancreatic beta-cells in C57BL/6 mice fed a high-fat (HF) diet. After 60 days on regular or HF diet, the metabolic state and morphometric islet parameters of wild-type (WT) and LDLr-/- mice were assessed. HF diet-fed WT animals became obese and hypercholesterolaemic as well as hyperglycaemic, hyperinsulinaemic, glucose intolerant and insulin resistant, characterizing them as prediabetic. Also they showed a significant decrease in beta-cell secretory response to glucose. Overall, LDLr-/- mice displayed greater susceptibility to HF diet as judged by their marked cholesterolaemia, intolerance to glucose and pronounced decrease in glucose-stimulated insulin secretion. HF diet induced similarly in WT and LDLr-/- mice, a significant decrease in Cx36 beta-cell content as revealed by immunoblotting. Prediabetic WT mice displayed marked increase in beta-cell mass mainly due to beta-cell hypertrophy/replication. Nevertheless, HF diet-fed LDLr-/- mice showed no significant changes in beta-cell mass, but lower islet-duct association (neogenesis) and higher beta-cell apoptosis index were seen as compared to controls. The higher metabolic susceptibility to HF diet of LDLr-/- mice may be explained by a deficiency in insulin secretory response to glucose associated with lack of compensatory beta-cell expansion.
Resumo:
There is great interindividual variability in the response to GH therapy. Ascertaining genetic factors can improve the accuracy of growth response predictions. Suppressor of cytokine signaling (SOCS)-2 is an intracellular negative regulator of GH receptor (GHR) signaling. The objective of the study was to assess the influence of a SOCS2 polymorphism (rs3782415) and its interactive effect with GHR exon 3 and -202 A/C IGFBP3 (rs2854744) polymorphisms on adult height of patients treated with recombinant human GH (rhGH). Genotypes were correlated with adult height data of 65 Turner syndrome (TS) and 47 GH deficiency (GHD) patients treated with rhGH, by multiple linear regressions. Generalized multifactor dimensionality reduction was used to evaluate gene-gene interactions. Baseline clinical data were indistinguishable among patients with different genotypes. Adult height SD scores of patients with at least one SOCS2 single-nucleotide polymorphism rs3782415-C were 0.7 higher than those homozygous for the T allele (P < .001). SOCS2 (P = .003), GHR-exon 3 (P= .016) and -202 A/C IGFBP3 (P = .013) polymorphisms, together with clinical factors accounted for 58% of the variability in adult height and 82% of the total height SD score gain. Patients harboring any two negative genotypes in these three different loci (homozygosity for SOCS2 T allele; the GHR exon 3 full-length allele and/or the -202C-IGFBP3 allele) were more likely to achieve an adult height at the lower quartile (odds ratio of 13.3; 95% confidence interval of 3.2-54.2, P = .0001). The SOCS2 polymorphism (rs3782415) has an influence on the adult height of children with TS and GHD after long-term rhGH therapy. Polymorphisms located in GHR, IGFBP3, and SOCS2 loci have an influence on the growth outcomes of TS and GHD patients treated with rhGH. The use of these genetic markers could identify among rhGH-treated patients those who are genetically predisposed to have less favorable outcomes.
Resumo:
The aim was to analyse the physical growth and body composition of rhythmic gymnastics athletes relative to their level of somatic maturation. This was a cross-sectional study of 136 athletes on 23 teams from Brazil. Mass, standing height and sitting height were measured. Fat-free and fat masses, body fat percentages and ages of the predicted peak height velocity (PHV) were calculated. The z scores for mass were negative during all ages according to both WHO and Brazilian references, and that for standing height were also negative for all ages according to WHO reference but only until 12 years old according to Brazilian reference. The mean age of the predicted PHV was 12.1 years. The mean mass, standing and sitting heights, body fat percentage, fat-free mass and fat mass increased significantly until 4 to 5 years after the age of the PHV. Menarche was reached in only 26% of these athletes and mean age was 13.2 years. The mass was below the national reference standards, and the standing height was below only for the international reference, but they also had late recovery of mass and standing height during puberty. In conclusion, these athletes had a potential to gain mass and standing height several years after PHV, indicating late maturation.
Resumo:
The objective of this study was to review the growth curves for Turner syndrome, evaluate the methodological and statistical quality, and suggest potential growth curves for clinical practice guidelines. The search was carried out in the databases Medline and Embase. Of 1006 references identified, 15 were included. Studies constructed curves for weight, height, weight/height, body mass index, head circumference, height velocity, leg length, and sitting height. The sample ranged between 47 and 1,565 (total = 6,273) girls aged 0 to 24 y, born between 1950 and 2006. The number of measures ranged from 580 to 9,011 (total = 28,915). Most studies showed strengths such as sample size, exclusion of the use of growth hormone and androgen, and analysis of confounding variables. However, the growth curves were restricted to height, lack of information about selection bias, limited distributional properties, and smoothing aspects. In conclusion, we observe the need to construct an international growth reference for girls with Turner syndrome, in order to provide support for clinical practice guidelines.
Resumo:
The aim of this cephalometric study was to evaluate the influence of the sagittal skeletal pattern on the 'Y-axis of growth' measurement in patients with different malocclusions. Lateral head films from 59 patients (mean age 16y 7m, ranging from 11 to 25 years) were selected after a subjective analysis of 1630 cases. Sample was grouped as follows: Group 1 - class I facial pattern; group 2 - class II facial pattern; and Group 3 - class III facial pattern. Two angular measurements, SNGoGn and SNGn, were taken in order to determine skeletal vertical facial pattern. A logistic regression with errors distributed according to a binomial distribution was used to test the influence of the sagittal relationship (Class I, II, III facial patterns) on vertical diagnostic measurement congruence (SNGoGn and SNGn). RESULTS show that the probability of congruence between the patterns SNGn and SNGoGn was relatively high (70%) for group 1, but for groups II (46%) and III (37%) this congruence was relatively low. The use of SNGn appears to be inappropriate to determine the vertical facial skeletal pattern of patients, due to Gn point shifting throughout sagittal discrepancies. Clinical Significance: Facial pattern determined by SNGn must be considered carefully, especially when severe sagittal discrepancies are present.
Resumo:
The reconstruction of the external ear to correct congenital deformities or repair following trauma remains a significant challenge in reconstructive surgery. Previously, we have developed a novel approach to create scaffold-free, tissue engineering elastic cartilage constructs directly from a small population of donor cells. Although the developed constructs appeared to adopt the structural appearance of native auricular cartilage, the constructs displayed limited expression and poor localization of elastin. In the present study, the effect of growth factor supplementation (insulin, IGF-1, or TGF-β1) was investigated to stimulate elastogenesis as well as to improve overall tissue formation. Using rabbit auricular chondrocytes, bioreactor-cultivated constructs supplemented with either insulin or IGF-1 displayed increased deposition of cartilaginous ECM, improved mechanical properties, and thicknesses comparable to native auricular cartilage after 4 weeks of growth. Similarly, growth factor supplementation resulted in increased expression and improved localization of elastin, primarily restricted within the cartilaginous region of the tissue construct. Additional studies were conducted to determine whether scaffold-free engineered auricular cartilage constructs could be developed in the 3D shape of the external ear. Isolated auricular chondrocytes were grown in rapid-prototyped tissue culture molds with additional insulin or IGF-1 supplementation during bioreactor cultivation. Using this approach, the developed tissue constructs were flexible and had a 3D shape in very good agreement to the culture mold (average error <400 µm). While scaffold-free, engineered auricular cartilage constructs can be created with both the appropriate tissue structure and 3D shape of the external ear, future studies will be aimed assessing potential changes in construct shape and properties after subcutaneous implantation.
Resumo:
The growth of organs and whole plants depends on both cell growth and cell-cycle progression, but the interaction between both processes is poorly understood. In plants, the balance between growth and cell-cycle progression requires coordinated regulation of four different processes: macromolecular synthesis (cytoplasmic growth), turgor-driven cell-wall extension, mitotic cycle, and endocycle. Potential feedbacks between these processes include a cell-size checkpoint operating before DNA synthesis and a link between DNA contents and maximum cell size. In addition, key intercellular signals and growth regulatory genes appear to target at the same time cell-cycle and cell-growth functions. For example, auxin, gibberellin, and brassinosteroid all have parallel links to cell-cycle progression (through S-phase Cyclin D-CDK and the anaphase-promoting complex) and cell-wall functions (through cell-wall extensibility or microtubule dynamics). Another intercellular signal mediated by microtubule dynamics is the mechanical stress caused by growth of interconnected cells. Superimposed on developmental controls, sugar signalling through the TOR pathway has recently emerged as a central control point linking cytoplasmic growth, cell-cycle and cell-wall functions. Recent progress in quantitative imaging and computational modelling will facilitate analysis of the multiple interconnections between plant cell growth and cell cycle and ultimately will be required for the predictive manipulation of plant growth.
Resumo:
Phoneutria nigriventer spider accidental envenomation provokes neurotoxic manifestations, which when critical, results in epileptic-like episodes. In rats, P. nigriventer venom (PNV) causes blood-brain barrier breakdown (BBBb). The PNV-induced excitotoxicity results from disturbances on Na(+), K(+) and Ca(2+) channels and glutamate handling. The vascular endothelial growth factor (VEGF), beyond its angiogenic effect, also, interferes on synaptic physiology by affecting the same ion channels and protects neurons from excitotoxicity. However, it is unknown whether VEGF expression is altered following PNV envenomation. We found that adult and neonates rats injected with PNV showed immediate neurotoxic manifestations which paralleled with endothelial occludin, β-catenin, and laminin downregulation indicative of BBBb. In neonate rats, VEGF, VEGF mRNA, and Flt-1 receptors, glutamate decarboxylase, and calbindin-D28k increased in Purkinje neurons, while, in adult rats, the BBBb paralleled with VEGF mRNA, Flk-1, and calbindin-D28k increases and Flt-1 decreases. Statistically, the variable age had a role in such differences, which might be due to age-related unequal maturation of blood-brain barrier (BBB) and thus differential cross-signaling among components of the glial neurovascular unit. The concurrent increases in the VEGF/Flt-1/Flk-1 system in the cerebellar neuron cells and the BBBb following PNV exposure might imply a cytokine modulation of neuronal excitability consequent to homeostatic perturbations induced by ion channels-acting PNV neuropeptides. Whether such modulation represents neuroprotection needs further investigation.
Resumo:
Mutations in the FGFR3 gene cause the phenotypic spectrum of FGFR3 chondrodysplasias ranging from lethal forms to the milder phenotype seen in hypochondroplasia (Hch). The p.N540K mutation in the FGFR3 gene occurs in ∼70% of individuals with Hch, and nearly 30% of individuals with the Hch phenotype have no mutations in the FGFR3, which suggests genetic heterogeneity. The identification of a severe case of Hch associated with the typical mutation c.1620C > A and the occurrence of a c.1150T > C change that resulted in a p.F384L in exon 10, together with the suspicion that this second change could be a modulator of the phenotype, prompted us to investigate this hypothesis in a cohort of patients. An analysis of 48 patients with FGFR3 chondrodysplasia phenotypes and 330 healthy (control) individuals revealed no significant difference in the frequency of the C allele at the c.1150 position (p = 0.34). One patient carrying the combination `pathogenic mutation plus the allelic variant c.1150T > C' had a typical achondroplasia (Ach) phenotype. In addition, three other patients with atypical phenotypes showed no association with the allelic variant. Together, these results do not support the hypothesis of a modulatory role for the c.1150T > C change in the FGFR3 gene.