229 resultados para Agrobacterium tumfaciens
Resumo:
过氧化氢(Hydrogen peroxide,H2O2)是植物和病原微生物互作中快速合成的一种早期活性氧类(reactive oxygen species, ROS ),它在植物受到病原微生物侵染后引发的一系列防御反应中起着非常重要的作用,因此通过外源基因导入提高植物体内过氧化氢的含量,可以增强植物的广谱抗病性。葡萄糖氧化酶(glucose oxidase, GO)可以催化β-D-葡萄糖氧化生成过氧化氢和葡萄糖酸,此酶已在数种细菌和真菌中检测到,但在植物和动物中仍未发现。为了尝试将此酶应用于水稻广谱抗病基因工程,本研究将葡萄糖氧化酶基因插入具有潮霉素抗性选择标记的双元载体pCAMBIA1301,新构建为水稻高效表达载体pCAG1301。将此质粒导入根癌农杆菌(Agrobacterium tumefaciens )菌株LBA4404后,转化粳稻(Oryza sativa )品种日本晴(Nipponbare)成熟胚来源的愈伤组织和幼胚,并由筛选出的潮霉素抗性愈伤组织分化再生植株。对所得到的潮霉素抗性植株的Southern杂交分析表明GO基因已整合到受体基因组,为单拷贝或双拷贝插入。利用过氧化氢与淀粉-碘化钾反应显蓝色的特性检测到了转基因植株产生的过氧化氢,证实GO基因表达产生的葡萄糖氧化酶已经在水稻中发挥功能,这是将GO基因转入单子叶植物的首例报道。 基于过氧化氢诱导的植物防御反应没有种属专一性的优点,可以预期所得转基因水稻植株很可能对水稻的多种病原菌具有良好的抗性。已完成的抗病性鉴定表明,所得转基因水稻植株对稻瘟病具有良好的抗性。
Resumo:
甜菜碱是植物在盐、干旱或其它胁迫下在细胞中迅速积累的一种相容性有机小分子化合物,它在细胞中的积累与植物抗盐性的提高密切相关。甜菜碱醛脱氢酶(BADH)催化甜菜碱醛转化为甜菜碱。我们将来源于耐盐植物山菠菜(Atriplx hortensis L.)的BADH基因通过农杆菌介导法导入‘百丽春’番茄(Lycopersicon esculentum L. ‘Bailichun’)中,并获得15株转化植株,PCR、Southern和Northern检测表明,其中的6株有外源BADH基因的整合,5株中BADH基因能够正常表达,但不同植株间BADH基因的表达水平和BADH酶活力有较大差异。对叶片电导率的测定表明,转基因植株比野生型的耐盐性有较大提高。T1代分析表明,检测的两个转基因株系后代遵循孟德尔分离规律,90mmol/L NaCl胁迫下种子发芽率提高了2~4倍,幼苗的苗高、根长和须根数三个指标均明显优于对照。部分T1代植株在水培条件下能够耐受180mmol/L NaCl胁迫。 植物耐盐的另一机理就是利用液泡膜上存在的转运蛋白将细胞内的有毒离子区域化。我们将已转入编码转运蛋白基因AtNHX1的番茄品种‘Moneymaker’(L. esculentum‘Moneymaker’)株系X1OEA1通过农杆菌介导法转入山菠菜BADH基因,以期获得转双基因耐盐番茄。目前已获得转基因植株,PCR结果证明部分抗性幼苗中已整合了BADH基因,其它各项分子检测正在进行中。
Resumo:
根癌农杆菌通过将一段含有“癌”基因的T-DNA导入植物基因组中,引起植物的肿瘤:冠瘿。根癌农杆菌的这种能力来源于Ti质粒(Tumor inducing plasmid)。遗传工程中,根癌农杆菌的这一特性被用来将连接入Ti质粒T-DNA区两个边界之间的外源基因转入植物基因组。随着植物分子生物学的发展,T-DNA转化的原理被进一步阐明,农杆菌介导的转基因技术也得到进一步优化,更适合遗传工程操作。特别是Ti质粒毒性区和T-DNA区的反式作用(即位于不同质粒的T-DNA和毒性区也能侵染植物)被发现以来,双元表达载体的构建使遗传工程操作大为简便。 常用的双元表达载体大小都在11kb以上,尽管远远小于几百kb的野生型Ti质粒,但在实际的体外操作中还是不够简便。常用的植物双元表达载体pBI121的基因序列被测定(Frisch et al.,1995),数据显示非T-DNA区一半以上的序列被发现和功能无关,这使双元载体的进一步缩小成为可能。本文即通过PCR方法克隆到pBI121非T-DNA区中载体复制、三亲杂交必需的片段,结合载体pART27中的T-DNA区(含有真核、原核表达活性的嵌合npt II基因)创造了小的合成型植物表达双元载体pSY1(小于7kb)。然后将pBI121上带有35S启动子和nos终止子的GUS基因克隆到pSY1的T-DNA区中,得到pSY2(约10kb)。进一步用pROK2上的35S启动子和nos终止子区替换pSY2上的GUS表达区,得到pSY3(约8kb)。通过三亲法将pSY2转入根癌农杆菌中,根癌农杆菌再通过叶盘法侵染烟草叶片,获得愈伤组织,愈伤组织进一步分化出小苗。GUS组织化学染色表明GUS基因在转基因的愈伤组织和小苗中均有表达,PCR检测也证明GUS基因被导入了植物基因组。pSY系列载体能成功的用于植物遗传转化。
Resumo:
青蒿素是从中国传统药用植物青蒿(Artemisia annua L.)中提取的新型抗疟特效药。青蒿素在国际市场上供不应求,而青蒿植株中青蒿素的含量很低,因此如何提高青蒿素的产量成为近年来研究的热点。通过基因工程获得转基因青蒿高产株系是提高青蒿素产量的最有潜力的途径之一。 对不同基因型青蒿进行不同的激素浓度配比的比较研究,得到丛生芽诱导率较高、生根诱导率较高的激素配比,从而建立了青蒿高效再生体系。然后系统地分析了青蒿丛生芽诱导、丛生芽生长、丛生芽生根诱导对Kan的敏感性。对影响根癌农杆菌介导青蒿转化的转化效率的两个主要因素,即农杆菌类型和青蒿基因型,以及其它影响因素,即预培养时间、侵染液的组成、共培养的方式和时间进行比较研究,建立了根癌农杆菌介导的青蒿高效转化体系。本高效转化和再生体系的转基因植株的得率为4%至10%,而且转基因植株再生周期短,再生能力强。 通过基因工程,在青蒿高产株系中过量表达本实验室从青蒿中克隆的FPS基因,结果转基因青蒿中FPS的酶活性是非转基因青蒿的2-3倍;转基因青蒿的青蒿素含量最高可达0.9%(DW),是非转基因青蒿中青蒿素含量的1.34倍。这些结果进一步论证了FPS在青蒿素生物合成代谢中的调控作用。
Resumo:
近年来,植物耐盐生物技术研究取得了可喜的进展,特别是通过抗盐基因转化在一定程度上使植物的耐盐性得到了提高。然而,植物的耐盐性是一个多基因控制的复杂性状,依赖于多个基因之间的相互作用。因此,只是将单个基因导入植物获得的抗逆性还是远不能达到满意的效果。一般认为,将多个与耐盐相关的基因转入到同一个植物(即所谓的“复合基因转化”)将会大大提高转基因植物的耐盐能力。 渗透调节是植物抵御盐胁迫的主要方式。植物渗透调节的方式分为两类:一是在细胞中吸收和积累无机盐,如通过离子通道、Na+/H+逆向运输蛋白和ATP酶/H+泵;二是在细胞中合成有机溶质,如脯氨酸和甘氨酸甜菜碱。 我们通过农杆菌介导法向转AtNHX1(拟南芥Na+/H+逆向运输蛋白编码基因)的番茄(Lycopersicum esculentum L. ‘Moneymaker’)株系X1OEA1自交二代植株(T2)中转入山菠菜甜菜碱醛脱氢酶基因(BADH)。PCR、Southern、RT-PCR和甜菜碱含量分析结果证明,BADH已经整合到目标植物基因组,并在转基因植株中转录和翻译表达。叶绿素荧光(Fv/Fm)、相对电导率(Rc/Rc’)、叶绿素含量(Chla+b)、叶绿素a/b比(Chla/b)和光合速率(Pn)测定结果表明,在200 mM NaCl 胁迫下,二次转化的番茄植株各项生理指标均优于转单基因AtNHX1的番茄。初步证明“复合基因转化”有助于进一步提高植物的耐盐性。同时对番茄的转化系统进行了优化,结果表明使用抗生素‘特美汀’作为抑制农杆菌的抗生素的转化效率明显高于使用头孢霉素。
Resumo:
作为模式植物,水稻和拟南芥对于禾本科植物的研究都有其不足,二穗短柄草(Brachypodiumdistachyon)有望成为它们良好的补充。它具有作为一种模式植物所应该具有的各项优点,并且它与温带禾本科植物的亲缘关系比水稻更近。建立其良好转化体系是其成功应用的一环。本论文第一章以建立其农杆菌转化体系为目的,成功的诱导了其胚性愈伤组织,获得了潮霉素抗性愈伤,发现乙酰丁香酮浓度与转化效率的关系,并证明Silwet L-77对提高其转化效率有明显的作用,为进一步完善其转化体系打下了基础。 VER2是由本实验室发现的小麦春化相关基因,并己证明它可能参与春化过程中O-CJlcNAc介导的信号传导。本论文第二章研究了将VER2在水稻中过表达所引起的表型,发现VER2与光有类似的抑制根生长的作用,并且能够互相影响对方的表型,说明二者在水稻内调控根生长的信号途径既有共同的作用,但是又相互制约。进一步的研究有可能会找到水稻根内IAA响应的重要因子。 在第三章中,根据芯片数据克隆了水稻的十个可能与赤霉素、茉莉酸和减数分裂相关的上下调基因,并对其中四个利用过表达和RNAi技术进行了水稻转化,以研究它们在水稻中的功能。其中一个基因过表达的表型与赤霉素缺陷造成矮化和叶色深绿两个特征一致,而RNAi导致植株高度增加、叶色黄绿。而该基因受赤霉素诱导上调的程度在三个芯片杂交结果中最大(log2=2.3275)这一点也为其功能提供了很好的提示,即可能参与了赤霉素信号途径。
Resumo:
盐角草(Salicornia europaea L.)是一种叶片退化而茎肉质化,不具有盐腺和盐囊泡的真盐生植物,可以在1020 mM NaCl下生存。其特殊的形态适应特点使其成为研究植物抗盐性的良好实验材料。但目前与盐角草抗盐机理相关的生理和分子方面的研究还非常有限。本文以盐角草为材料,首先探讨了盐分和渗透胁迫对其光合作用和渗透平衡的影响,在此基础上进一步克隆了盐角草类胡萝卜素合成途径中的两个关键酶,八氢番茄红素合成酶(SePSY)和番茄红素β-环化酶(SeLCY)基因,并进行了功能分析。该研究对于了解类胡萝卜素在植物抗盐性中所起的作用具有重要意义。 盐分和渗透胁迫对其光合作用和渗透平衡影响的实验结果表明:200 mM NaCl是盐生植物盐角草生长的最适盐浓度,在该盐度下盐角草中叶绿素a/b的比值和光饱和点升高,植株的光合作用表现出增强的效应,植株生长最佳。而27% PEG-6000所模拟的渗透胁迫显著降低了盐角草中叶绿色a/b的比值,抑制其光合作用和生长。200 mM NaCl下,Na+的含量显著增加,但脯氨酸含量保持不变,说明Na+对盐角草渗透平衡的作用要强于脯氨酸。同时盐角草中液泡H+-ATPase(V-H+-ATPase)活性增强,而盐角草Na+/H+逆向转运蛋白基因(SeNHX1)在盐分和渗透胁迫下却表现为组成型表达;我们因此推断在盐分胁迫下,Na+的吸收是由于液泡H+-ATPase活性的增强,而不是诱导SeNHX1基因的表达。同时Na+的吸收可能进一步诱导了与光合作用相关基因的表达。 盐分对植物的影响涉及植物体内包括光合作用和活性氧代谢在内的多个代谢过程。在植物中,类胡萝卜素是植物捕光天线复合体(LHC)和光系统反应中心叶绿素结合蛋白的重要组成部分。植物体内类胡萝卜素能够清除植物叶绿体,线粒体和过氧化物体在电子传递过程中产生的活性氧。同时类胡萝卜素是植物激素ABA的前体。200 mM NaCl虽然增加了盐角草细胞的渗透势,但并没有对其造成氧化胁迫和离子毒害,相反提高了其光合能力。类胡萝卜素作为植物活性氧的淬灭剂和光系统的组成成分,可能在盐角草抗盐机理中发挥着比较重要的作用。在过去的十年中,类胡萝卜素研究大多集中在其生物合成和提高作物中类胡萝卜素含量方面,可是,在植物对非生物逆境(如氧化和盐分胁迫)的适应机制中,类胡萝卜素合成途径究竟发挥什么作用目前还不是很清楚。为了了解盐角草中类胡萝卜素合成途径在植物逆境的适应机制中所发挥的作用,本文采用RACE的方法克隆了盐角草类胡萝卜素合成途径中的两个关键酶基因 SePSY和SeLCY,将它们构建到植物表达载体SN1301中,转化拟南芥,并对它们进行了初步的功能分析。 研究发现盐角草SePSY基因全长1655 bp,编码419个氨基酸,推测分子量为47.2 kDa,等电点为8.92。其蛋白在1-65个氨基酸处有一个信号肽。在1-19和242-264氨基酸处有2个跨膜区。盐角草SeLCY基因全长1937 bp,编码498个氨基酸,推测分子量为56.1 kDa,等电点为8.41。其蛋白在1-37个氨基酸处有一个信号肽。在79-96,367-385和454-474氨基酸处有3个跨膜区。SePSY和SeLCY基因过量表达均促进转基因拟南芥的生长,转SePSY基因拟南芥次生根数目比野生型拟南芥明显增多。SePSY和SeLCY基因的过量表达还使转基因拟南芥对百草枯的抗性得到提高;SePSY基 因的过量表达增强了植株体内抗氧化保护酶过氧化物酶(POD),超氧化物歧化酶(SOD)活性,但过氧化氢酶 (CAT)的变化不显著;转SeLCY基因株系POD,SOD,CAT的活性都有所增强,但转SePSY基因株系中POD活性明显高于 转SeLCY基因株系。转SePSY和SeLCY基因拟南芥叶片中丙二醛(MDA)和H2O2含量均降低,但转SePSY基因株系中MDA和H2O2含量明显低于转SeLCY基因株系。说明转基因拟南芥对氧化胁迫的抗性得到了提高,同时使得光系统II(PSII)和细胞膜的结构和功能不被破坏。而转SePSY基因株系对盐分和氧化胁迫的抗性明显高于转SeLCY基因株系。SePSY和SeLCY基因的过量表达还提高了转基因拟南芥的光合效率,气孔导度和Fv/Fm比值。 SePSY和SeLCY基因转化拟南芥及其功能分析的初步结果表明,SePSY和SeLCY基因的过量表达提高了转基因拟南芥对体内活性氧(ROS)的清除能力,增强了拟南芥的光合能力,进而提高了拟南芥的抗盐性。
Resumo:
维生素E(V.E.)在动物细胞内具有抗氧化等重要作用,但在植物体内的功能却鲜为人知。本研究以烟草为材料,利用根癌农杆菌(Agrobacterium tumefaciens)介导法在烟草中过量表达拟南芥来源的VTE1。通过外源VTE1基因的过量表达提高内源V.E.的含量, 进而研究转VTE1基因植株对胁迫的耐受性反应,以探讨植物体内V.E.含量与植物胁迫耐受性的关系,为植物抗逆机理的研究和利用奠定基础。 本实验利用CaMV35s启动子与拟南芥来源的生育酚环化酶基因(VTE1)构建的嵌合表达载体,以根癌农杆菌介导的叶盘法转化烟草W38。实验结果表明: 1. 具有卡那霉素抗性的再生植株经PCR检测,得到了与阳性对照一致的495bp的目标片段;经RT-PCR检测,其中90%有外源基因表达。 2. 转基因植株的V.E.含量比对照植株高2倍左右,个别株系高达10.16倍。 3. VTE1基因的表达受环境胁迫的影响,不同程度的冷冻、热激、PEG处理均可影响VTE1基因的表达。经过冷冻处理60分钟、热处理20小时、以及PEG处理6小时,该基因表达量均有提高。冷冻处理条件下该基因的表达量是未处理的3倍,热处理条件下是未处理的2倍左右,PEG处理是未处理的3.5倍。在冷冻、热激、PEG胁迫处理过程中,转化苗的V.E.含量变化与外源VTE1基因的表达相对应,表明转化苗的V.E.合成主要由外源VTE1基因的终产物VTE1催化;在冷冻、热激、PEG胁迫处理过程中,V.E.含量与APX、CAT、SOD等抗氧化酶活性之间存在一定程度的正相关性,表明V.E.与这些抗氧化酶共同组成了植物体内的抗氧化网络,保护植株免受氧化损伤;V.E.的变化与MDA之间存在一定程度的负相关性,减轻植物的过氧化损伤; 4. V.E.可提高植物的抗旱性,我们检测了11个转化烟草株系的叶片相对含水量(RWC),在大多数转化烟草植株中,干旱胁迫24小时的RWC都比野生型高,高出0.16-45%(p<0.001)。表明转基因烟草比野生型更抗旱; 5. 在耐盐性实验中转基因植株对盐的抗性明显高于野生型烟草;同时,在不同盐浓度(150、250mM)胁迫下转基因植株V.E.含量比未转化植株增加了1.3-1.8倍。 这些研究结果表明,在植物体内转入V.E.代谢途径中的单个外源基因,可有效提高内源V.E.合成,提高植株对环境胁迫的抗性。
Resumo:
土壤的盐碱化问题已经严重影响到世界范围内许多重要作物的生产。培育耐盐作物是解决这一问题的最有效途经。利用耐盐相关基因的转化可以在不改变或很少改变植物其它性状的情况下提高植物的耐盐性,因此基因工程方法对于改良植物耐盐性及其机理的研究具有重要的意义。目前植物耐盐基因工程从调控渗透调节物质和盐离子区隔化两个方面开展了较多的研究。已经获得一些耐盐性提高的转基因植物。 本研究拟用耐盐性较强植物山菠菜中的甜菜碱合成关键基因BADH和盐生植物盐角草的液泡膜Na+/H+ anitiporter基因SeNHX1对模式植物烟草进行转化,以确定其各自在耐盐性方面所起的作用。同时,现有的研究表明植物的耐盐性是多基因控制的复杂性状,因此拟把SeNHX1和BADH 这两个涉及不同耐盐机理的基因构建到同一个植物表达载体上,以比较单基因转化和双基因转化在提高植物耐盐性方面的优劣。除此之外,并对已经转入BADH基因番茄的耐盐性和遗传稳定性分析进行了研究。 转BADH基因番茄已经稳定遗传到T4世代。通过对5个转BADH基因番茄株系在T0世代、T3世代和T4世代的分析,表明除了株系T4-3由T0世代的3个拷贝变为1个拷贝外,其余各株系拷贝数均没有发生变化。外源基因编码的酶活性和最终催化产物甜菜碱在盐分胁迫下都能较容易的检测到,说明外源基因在番茄基因组中的遗传是稳定的,没有发生丢失。在连续2个世代的耐盐性鉴定中,各转基因株系的耐盐性较为一致,均比野生型有了较大的提高。其中株系T4-5连续2年表现出了较低的减产率,株系T4-8也在连续的2年中表现出了最高的单株产量。盐分胁迫下转BADH基因各个株系比野生型有较高的K+和Ca2+含量,较低的Na+含量,转基因株系较野生型有较低的脐腐病果率。 通过SeNHX1、BADH单独转化以及构建双价载体共转化的方法获得了3种类型的转基因烟草。Southern和Northern 检测结果表明,外源基因已经整合到烟草基因组中,并得到了正确的表达。转BADH基因烟草在盐分胁迫下能检测到明显的BADH酶活性和甜菜碱含量。转基因烟草T0代对盐分胁迫、氧化胁迫的抗性均较野生型对照有较大的提高。转基因株系在200 mM NaCl胁迫下较野生型有较高的光合速度。百草枯处理过的野生型叶盘比转基因株系积累了更多的丙二醛,表明野生型受到了更大的氧化胁迫。 已经获得3种转不同基因烟草的T1代,且T1代具有较强的耐渗透胁迫能力。转基因烟草的T0种子均能在含100 mg/L 卡钠霉素培养基上发芽和正常生长,其中部分种子能够在含200 mM NaCl 培养基上发芽并能较好的生长,而野生型根本不能发芽。从200 mM甘露醇胁迫1周后,又转移到营养液中的生长1周的情况来看,转基因烟草能较快的恢复正常的生长,有新的叶子和根长出,而野生型却不能,同时转基因株系比野生型具有更大的单株鲜重。 转BADH基因番茄在遗传上是稳定的,并且其耐盐性有了较大的提高。双基因转化烟草的抗盐性要好于单基因转化,但SeNHX1基因转化要好于BADH基因转化。说明SeNHX1基因在提高植物耐盐性方面要比BADH基因有更强的功能,同时,也表明多基因转化在植物的耐盐改良方面可能是一个更为有效的方法。
Resumo:
Ⅰ 虎杖聚酮类化合物生物合成相关基因的克隆及功能分析 虎杖 (Polygonum cuspidatum Sieb. et Zucc) 属于蓼科蓼属多年生草本植物,在中国和日本民间曾被广泛用于动脉粥样硬化、高血压、咳嗽、化脓性皮肤炎以及淋病的治疗,具有祛风利湿、散瘀定痛、止咳化痰等功效。而在现代医学上最令人瞩目和具有发展前景的是其在抗肿瘤、心血管保护、抗氧化方面的作用,相关疗效主要来自于虎杖中结构迥异、种类丰富的聚酮化合物及其衍生物资源。这些聚酮类化合物主要包括蒽醌、大黄素、大黄素-甲醚、大黄酚、芪类以及类黄酮化合物等。其中,大部分聚酮类化合物生物合成途径机制尚不明确,但可以肯定的是植物类型III聚酮合酶type III polyketide synthases (PKSs) 在这些聚酮化合物的生物合成起始反应中行使着关键的作用。因此,除了我们所熟悉的类黄酮化合物、芪类化合物之外,进一步分离和分析虎杖中其它重要聚酮类化合物生物合成所涉及的类型III聚酮合酶基因的是非常值得期待的。 目前,已经有14个植物类型III PKS基因被克隆和功能分析。植物类型III PKS的共同特征包括基因结构、序列相似性、保守的活性中心、酶学性质以及共同的催化机制等。显花植物(裸子植物和被子植物)中,植物类型III PKS的基因结构绝对保守,除了一个早期报道的金鱼草(Antirrhinum majus)查尔酮合酶chalcone synthase (CHS) 含有第二个内含子外,迄今为止所有已知的植物类型III PKS基因均含有一个内含子且该内含子位置保守。有趣的是,在本研究中,两个含有3个内含子的类型III PKS基因从虎杖中被分离,且两个基因3个内含子的位置完全保守,这是三内含子类型III PKS基因首次得到分离。除了新奇的基因结构外,体外功能分析显示上述两个基因还具有特殊的酶学性质和功能。 本论文围绕上述2个三内含子基因开展了以下工作: 虎杖中一个由三内含子基因编码的新型类型III聚酮合酶 一个类型III PKS的cDNA及其相应的基因(PcPKS2)从药用植物虎杖中被克隆。序列分析结果表明,PcPKS2的开放阅读框被3个内含子分隔,这是一个出人意料的发现,因为截至到目前为止,除了金鱼草一个CHS基因外,所有已知的类型III PKS基因均在固定位置上含有一个内含子。除了特殊的基因结构外,PcPKS2显示了一些有趣的特性:(i) CHS“守卫”苯丙氨酸——Phe215和Phe265在PcPKS2中双双缺失,它们分别被亮氨酸和半胱氨酸取代;(ii) 体外功能分析结果表明,当酶促反应体系的pH值为6.5-8.5时,大肠杆菌中过表达的重组PcPKS2高效地合成丁烯酮非环化产物——4-香豆酰甘油酸内酯(4-coumaroyltriacetic acid lactone (CTAL))为主产物,而丙烯酮非环化产物bis-noryangonin (BNY) 以及苯亚甲基丙酮为副产物;而当酶促反应体系的pH值为9.0时,PcPKS2高效地合成苯亚甲基丙酮为主产物,而CTAL、BNY为副产物。另外,除了上述3种产物外,在不同的pH条件下,还有痕量的柚皮素查尔酮能被检测到。此外,在4-香豆酰辅酶A(4-coumaroyl-CoA)的类似化合物中,除了4-香豆酰辅酶A外,只有feruloyl-CoA能够被PcPKS2接受作为起始底物。PcPKS2不接受脂肪酰辅酶A——异丁酰基辅酶A(isobutyryl-CoA)、异戊酰基辅酶A(isovaleryl-CoA)以及乙酰辅酶A(acetyl-CoA)作为起始底物。Southern blot杂交结果表明,在虎杖基因组中存在2-4个PcPKS2基因的拷贝。Northern blot杂交结果表明,在根茎和幼叶中,PcPKS2表达量很高,而在根中无表达。叶中的PcPKS2的表达受病原菌诱导,但不受伤诱导。 虎杖中一个编码双功能类型III聚酮合酶的三内含子基因的鉴定 显花植物中,所有已知的类型III PKS 基因均含有一个内含子且位置绝对保守。本研究中,综合运用PCR技术,从富含聚酮类化合物的植物虎杖中克隆得到一个类型III PKS 基因(PcPKS1)及其cDNA。序列分析结果表明,PcPKS1含有3个内含子。系统发育分析结果表明,PcPKS1与其它植物的CHSs归为一类。然而,体外功能分析结果表明,当酶促反应体系pH值为7.0时,大肠杆菌中过表达的重组PcPKS1高效地合成柚皮素查尔酮(naringenin)为单一产物;而当pH值为9.0时,苯亚甲基丙酮(p-hydroxybenzalacetone)几乎为重组PcPKS1的唯一产物。后续的研究表明,与典型的CHSs相比,PcPKS1具有另外一些不同的特点:在pH值为9.0时(PcPKS1的苯亚甲基丙酮合成活性最适pH值),在4-香豆酰辅酶A的类似化合物中,只有feruloyl-CoA能够被PcPKS1接受作为起始底物。与CHSs展现出的对脂肪酰辅酶A宽泛的底物特异性不同,在不同的pH条件下,PcPKS1不接受异丁酰基辅酶A(isobutyryl-CoA)、异戊酰基辅酶A(isovaleryl-CoA)以及乙酰辅酶A(acetyl-CoA)作为起始底物。以上数据指出重组PcPKS1是一个具有查尔酮合酶(CHS)和苯亚甲基丙酮合酶(BAS)活性的双功能酶。Southern blot杂交结果表明,在虎杖基因组中存在2-4个PcPKS1基因的拷贝。Northern blot杂交结果表明,PcPKS1可能在防御病原菌和草食动物方面起着重要作用。PcPKS1和PcPKS2共同从虎杖中被分离的事实极有可能暗示了苯丁烷类化合物(phenylbutanoid)及其衍生物存在于虎杖中。 Ⅱ 高山红景天酪醇生物合成代谢途径机制研究 高山红景天(Rhodiola sachalinensis A. Bor)是景天科(Crassulaceae)红景天属多年生草本植物,作为一种适应原性中草药在中国的应用史已经超过800年。最近红景天提取物作为一种重要的商业药用制剂资源,其应用遍及欧洲、亚洲和美国,其主要治疗范围包括抗变应性和消炎,提高心理机敏性等。目前已经非常明确,红景天甙(salidroside)和甙元酪醇(tyrosol)是红景天属植物的主要功效成分,主要分布于这类植物的根中并且具有抗缺氧、抗疲劳、延缓衰老、预防紫外线辐射伤害等功效。红景天甙为酪醇8-O-β-D葡萄糖甙,是酪醇在葡萄糖基转移酶UDP-glucosyltransferase (UGT) 的催化下糖基化后形成的,可以认为是酪醇在植物体内的贮存形式。酪醇作为一种重要的活性分子,同样存在于橄榄树和葡萄酒中。 虽然已经非常明确酪醇来自于莽草酸代谢途径,然而其具体的生物合成途径及其调控仍不明确。总结以往的报道,在酪醇的生物合成上主要存在两种观点:一是酪醇可能来自于苯丙烷代谢途径产生的4-香豆酸(4-coumaric acid)前体;二是来自于酪氨酸的酪胺(tyramine)可能是酪醇生物合成的直接前体。我们的工作兴趣主要围绕着鉴别高山红景天中的酪醇生物合成途径展开: 高山红景天内源苯丙氨酸解氨酶PALrs1的过表达对红景天甙积累的影响 红景天甙是来自于药用植物高山红景天的一种适应原性新型药物,其生物合成途径可能起始于苯丙氨酸或酪氨酸。由于高山红景天野生植物资源的匮乏和相对含量很低,阐明红景天甙的生物合成途径对于增加红景天甙的供给至关重要。在我们以前的工作中,运用cDNA末端快速扩增技术(RACE),一个编码苯丙氨酸解氨酶phenylalanine ammonia-lyase (PAL)的cDNA从高山红景天中被克隆,命名为PALrs1。在本研究中,PALrs1置于35S启动子+Ω增强子序列的控制下通过农杆菌(Agrobacterium tumefaciens)介导法转化回高山红景天。PCR 和 PCR–Southern blot分析结果表明,PALrs1已经整合到了转基因植物的基因组上。Northern blot杂交结果表明,PALrs1已经获得在转录水平上的高水平表达。与预期的结果相同,高效液相色谱High-performance liquid chromatography (HPLC)测定结果显示PALrs1的过表达引起4-香豆酸含量增长3.3倍。然而,与之相反的是,酪醇和红景天甙含量与对照相比反而分别下降4.7和7.7倍。此外,我们发现PALrs1的过表达造成酪氨酸含量下降2.6倍。这些数据暗示着PALrs1的过表达和4-香豆酸的积累并不能促进酪醇的生物合成。酪醇,作为一种苯乙烷类衍生物并非来自苯丙氨酸,而酪氨酸含量的下降则极有可能是酪醇生物合成和红景天甙积累大规模下降的直接原因。
Resumo:
植物种子萌发、开花结实和衰老等一系列生长发育过程,都受到植物激素的影响。细胞分裂素作为重要的生长调节物质,对其传统生物化学和生理学特性的研究已积累子大量资料。随着分子生物学的发展,对植物激素的研究又进一步从单纯的生物学描述阶段深入到分子水平研究的阶段。尤其是近年来对来自病原微生物植物激素相关基因的研究,为揭示细胞分裂素的作用机理和细胸分裂素的水平调节机制的阐明开辟了新的途径。 根瘤农杆菌T-DNA上ipt、iaaM和iaaH基因和发根农杆菌的rol基因表达产物与植物激素的代谢有关。rolC基因是位于发根农杆菌T-DNA区的12号开放读框,编码细胞分裂素-β-葡萄糖苷酶,水解结合态细胞分裂素为自由态细胞分裂素。ipt基因编码异戊烯基转移酶,是细胞分裂素合成过程中的关键酶。 本文用PCR方法从发根农杆菌(Agrobacterium rhizogenes)1601质粒中扩增 rolC基因,并构建CaMV 35S启动子驱动下的双元表达载体。以农杆菌介导的叶盘法,分别对野生型烟草(Nicotiana tabacum L. cv. W38)和已转入异戊烯基转移酶基因(ipt)的3F1和3F2烟草进行转达化。Southern blot和Northern Dot Blot分析表明,rolC基因已导入烟草植株,并具有转录活性。转基因烟草的形态特征与细胞分裂素过量表达的植株表现出的特征一致。 用ELISA方法测定转基因烟草植株中激素的含量,结果显示,单独转rolC基因烟草和同时转入rolC和ipt两个基因的烟草,细胞分裂素的水平有不同程度的提高。转基因烟草表现多芽、节间缩短、叶色深绿等现象。同时,转基因烟草内部发生生理变化,如总自由氨基酸、脯氨酸在正常情况下较对照减少,气孔延迟关闭。在干旱胁迫下,转基因烟草随水势的降低、总自由氨基酸和脯氨酸的变化与对照不同。转基因烟草在开始干旱阶段较对照的总自由氨基酸和脯氨酸含量低,随着干旱胁迫的加深,植物中自由氨基酸的含量增加,但转基因植物自由氨基酸的含量高峰值出现时间较对照推迟。干旱胁迫48小时后,恢复给水,转基因植物较对照易恢复正常生长状态,表明转细胞分裂素基因植物抗旱能力增强。另外,叶片总蛋白SDS-PAGE电泳分析表明,转基因植物蛋白质含量高于对照,某些蛋白组分所占比例也明显提高。 综上所述,转rolC和ipt基因烟草的形态和生理变化,是细胞分裂素过量表达引起植物体内激素失衡的结果。
Resumo:
根癌农杆菌通过将一段含有“癌”基因的T-DNA导入植物基因组中,引起植物的肿瘤:冠瘿。根癌农杆菌的这种能力来源于Ti质粒(Tumor inducing plasmid)。遗传工程中,根癌农杆菌的这一特性被用来将连接入Ti质粒T-DNA区两个边界之间的外源基因转入植物基因组。随着植物分子生物学的发展,T-DNA转化的原理被进一步阐明,农杆菌介导的转基因技术也得到进一步优化,更适合遗传工程操作。特别是Ti质粒毒性区和T-DNA区的反式作用(即位于不同质粒的T-DNA和毒性区也能侵染植物)被发现以来,双元表达载体的构建使遗传工程操作大为简便。 常用的双元表达载体大小都在11kb以上,尽管远远小于几百kb的野生型Ti质粒,但在实际的体外操作中还是不够简便。常用的植物双元表达载体pBI121的基因序列被测定(Frisch et al.,1995),数据显示非T-DNA区一半以上的序列被发现和功能无关,这使双元载体的进一步缩小成为可能。本文即通过PCR方法克隆到pBI121非T-DNA区中载体复制、三亲杂交必需的片段,结合载体pART27中的T-DNA区(含有真核、原核表达活性的嵌合npt II基因)创造了小的合成型植物表达双元载体pSY1(小于7kb)。然后将pBI121上带有35S启动子和nos终止子的GUS基因克隆到pSY1的T-DNA区中,得到pSY2(约10kb)。进一步用pROK2上的35S启动子和nos终止子区替换pSY2上的GUS表达区,得到pSY3(约8kb)。通过三亲法将pSY2转入根癌农杆菌中,根癌农杆菌再通过叶盘法侵染烟草叶片,获得愈伤组织,愈伤组织进一步分化出小苗。GUS组织化学染色表明GUS基因在转基因的愈伤组织和小苗中均有表达,PCR检测也证明GUS基因被导入了植物基因组。pSY系列载体能成功的用于植物遗传转化。
Resumo:
利用RNAi改良大豆油脂品质 大豆[Glycine max (L.) Merr.]起源于中国,栽培历史悠久,是重要的粮食作物, 同时也是植物油和蛋白的重要来源。随着经济的发展和生活水平的提高,人们不但对大豆的需求量大大增加,同时对大豆的品质也提出了更高的要求。近年来,我国大豆进口量逐年攀升,已远远超过本国生产量。国外转抗除草剂转基因大豆大面积种植大大降低了生产成本,直接影响了我国大豆生产。因此,提高产量和改良品质是当前中国大豆生产所面临的重要课题。基因工程是大豆品种改良更为有效和快速的方法,但是由于历史原因我国的大豆转基因育种与发达国家尚存在一定差距,对我国的大豆生产贡献十分有限。因此,建立高效的大豆转化体系,加强大豆基因工程研究和育种是解决大豆面临困境的关键。 本研究的目的是以我国主要栽培大豆品种(黑农、合丰和东农等)为材料,利用GUS(β-glucuronidase)报告基因和RNAi技术,建立高效的大豆基因转化体系和基因功能研究体系。为大豆产量和品质基因工程改良提供技术手段和理论基础。结果如下: 以大豆下胚轴为外植体,对分生组织产生不定芽的频率进行了研究。培养基中添加高浓度BAP(6-benzylaminopurine)可以诱导外植体分生组织增殖产生不定芽的发生率;在培养基中添加银离子可以明显地促进大豆单个外植体多芽的产生,使得诱导不定芽总数目显著增加;不同基因型大豆再生不定芽能力有着较大区别,黑农44,黑农37,合丰35,合丰39等品种再生能力强;相对于大豆子叶节等再生系统,大豆下胚轴体系具有高效高频的再生特点(总的再生频率高于80%),且重复性好,容易操作。 以大豆下胚轴为外植体,用含有GUS报告基因的根癌农杆菌对其进行遗传转化,并重点对农杆菌菌液浓度、农杆菌侵染时间、乙酰丁香酮(AS)和抗氧化剂浓度等因素对农杆菌大豆转化效率的影响进行了研究。组织化学染色结果显示GUS基因在外植体顶端表达强烈,表达位置主要位于初生芽基部周围的分生组织。 农杆菌浸染时间以 4h 为最佳,此时的GUS瞬时表达频率可达73.0%;培养基中添加浓度为200μmol/L的乙酰丁香酮,可以显著增加GUS瞬时表达频率。抗氧化剂可以显著降低共培养阶段外植体的褐化和坏死率,进而显著提高农杆菌转化效率。用根癌农杆菌转化大豆下胚轴的方法得到了表达GUS基因转基因大豆株系。 利用大豆油酸去饱和酶基因(FAD2-1;Genbank, L43920)在第315-852碱基之间的基因片断构建了反向重复的RNAi表达载体,以农杆菌介导大豆下胚轴转化方法进行转化,并且获得转基因植株。经过PCR,Southern杂交和转基因后代的脂肪酸分析,表明沉默结构已经成功整合到大豆基因组中,并成功抑制了内源基因的表达。与栽培大豆品种相比较,转基因大豆种子的脂肪酸组成发生显著变化,油酸含量由栽培大豆的18.1%增加到71.5%¬-81.9%;亚油酸含量从栽培大豆的46.4%降到了约3.4%。 栽培大豆种子中油酸去饱和比率(ODP, oleic desaturation proportion)为0.76 到 0.84,转基因大豆种子的油酸去饱和比率降为0.06-0.26,表明Δ12-去饱和酶活性降低了74%-94%。上述结果表明,我们构建的RNAi反向重复序列沉默结构高效地抑制了大豆种子FAD2-1基因。 在本研究中,我们通过外源GUS基因的表达和内源FAD2基因的抑制,成功地建立了以大豆下胚轴为外植体的高效农杆菌介导大豆转化体系,并获得了相应的转基因株系。本研究对我国大豆品种基因工程改良以及进一步大豆功能基因组研究有重要参考价值。 四合木茎积累三脂酰甘油特征 四合木(Tetraena mongotica Maxim)是蒺藜科(Zygophyllaceac)四合木属唯一的种,是地球上最具代表性的古老残遗濒危珍稀植物。由于四合木极易燃烧,当地居民称其为“油柴”。 通过对四合木内可能存在的“油”成分进行了分析,我们发现其茎组织含有大量的三脂酰甘油(Triacylglycerols),含量达到46 mg/g DM。在韧皮部中更高,达到90 mg/g DM。我们通过半薄切片对四合木中三脂酰甘油在不同组织的分布和存在形式进行了研究,发现三脂酰甘油主要以油体形式存在于木质部和韧皮部的薄壁组织中。在韧皮部中,几乎所有的薄壁细胞都含有大量的油体。 三脂酰甘油在植物的生长发育中起着非常重要的作用。作为植物生长发育所需的碳源和能量,三脂酰甘油一般储存在植物的种子和果实中。虽然也有关于其在茎和叶中发现的报道,但是含量很少。四合木茎组织含有大量的三脂酰甘油,这种现象可能与四合木茎中存在茎特异油脂合成酶系统有关。因此,克隆相关基因并在作物中表达,将对能源植物的开发具有重要意义。
Resumo:
本实验室果蝇研究工作,主要集中在黑腹果蝇的新基因起源的研究。新基因起源的分子机制主要包括:外显子重排、基因复制、基因逆转座、移动元件介导、基因水平转移、基因从头起源、基因的断裂融合。为了阐述这些新基因的产生和它们所带来的物种适应性,我们对这些新近起源的基因进行了功能研究。但是,仅仅限于新基因所在物种的功能研究并不能完全解释新基因产生的进化原因,我们需要了解它是否能够给没有该基因的果蝇物种带来一定的适应性。例如一些生殖相关新基因,如果我们将它们转入没有该基因的果蝇,那是否能够给该果蝇带来生殖能力的提高?无论结果如何,这都为我们研究新基因的起源提供一个重要线索。由此,黑腹果蝇以外的其它果蝇物种中实现转基因成为该研究的重要技术环节。但是,实验室目前的转基因系统仅限于P转座子介导的黑腹果蝇转基因系统,因而我们需要建立一种新的转基因平台。而转座子Minos打破物种范围的转基因特性,以及它的转座特点为我们提供了选择。转座子Minos是从果蝇D. hydei中克隆出来长约1.8kb的Ⅱ型转座子,Tc1家族转座元件成员。Minos的转座机制与大部分转座子一样,在宿主基因组里面实行着剪切和粘贴的运作机制。Minos在转座时,偏向插入TA位点并且主要集中于内含子区域,这样可以减少对插入位置基因的影响。此外,Minos在黑腹果蝇中的转座效率约30%,并且拥有一套成熟的选择标记。因此,Minos成为我们解决非黑腹果蝇转基因技术难题的首选。 在本文的工作中,我们采用由希腊Savakis教授(希腊分子生物学与生物技术研究所)提供的Minos转基因系统,完成果蝇的转基因实验。在这套转基因系统中,非自主的转座子Minos和转座酶基因被克隆到了不同载体当中。其中Minos转座子序列中插入了由3xP3眼睛特异表达的启动子介导表达的eGFP报告基因,而转座酶基因则由热激蛋白hsp70启动子调控表达。实验过程中,我们在果蝇D. melanogaster 和D. yakuba的胚胎中分别同时显微注射入含有转座子和转座酶本实验室果蝇研究工作,主要集中在黑腹果蝇的新基因起源的研究。新基因起源的分子机制主要包括:外显子重排、基因复制、基因逆转座、移动元件介导、基因水平转移、基因从头起源、基因的断裂融合。为了阐述这些新基因的产生和它们所带来的物种适应性,我们对这些新近起源的基因进行了功能研究。但是,仅仅限于新基因所在物种的功能研究并不能完全解释新基因产生的进化原因,我们需要了解它是否能够给没有该基因的果蝇物种带来一定的适应性。例如一些生殖相关新基因,如果我们将它们转入没有该基因的果蝇,那是否能够给该果蝇带来生殖能力的提高?无论结果如何,这都为我们研究新基因的起源提供一个重要线索。由此,黑腹果蝇以外的其它果蝇物种中实现转基因成为该研究的重要技术环节。但是,实验室目前的转基因系统仅限于P转座子介导的黑腹果蝇转基因系统,因而我们需要建立一种新的转基因平台。而转座子Minos打破物种范围的转基因特性,以及它的转座特点为我们提供了选择。转座子Minos是从果蝇D. hydei中克隆出来长约1.8kb的Ⅱ型转座子,Tc1家族转座元件成员。Minos的转座机制与大部分转座子一样,在宿主基因组里面实行着剪切和粘贴的运作机制。Minos在转座时,偏向插入TA位点并且主要集中于内含子区域,这样可以减少对插入位置基因的影响。此外,Minos在黑腹果蝇中的转座效率约30%,并且拥有一套成熟的选择标记。因此,Minos成为我们解决非黑腹果蝇转基因技术难题的首选。 在本文的工作中,我们采用由希腊Savakis教授(希腊分子生物学与生物技术研究所)提供的Minos转基因系统,完成果蝇的转基因实验。在这套转基因系统中,非自主的转座子Minos和转座酶基因被克隆到了不同载体当中。其中Minos转座子序列中插入了由3xP3眼睛特异表达的启动子介导表达的eGFP报告基因,而转座酶基因则由热激蛋白hsp70启动子调控表达。实验过程中,我们在果蝇D. melanogaster 和D. yakuba的胚胎中分别同时显微注射入含有转座子和转座酶所在的质粒。转座酶在37度条件诱导下进行表达,协助Minos完成转座过程。在转基因果蝇的阳性筛选中,我们利用眼睛特异表达的绿色荧光蛋作为选择标记。并且,我们通过PCR实验进一步验证了转基因果蝇的真实性。本研究中,我们对转基因实验条件进行了初步优化。我们通过对黑腹果蝇白眼突变品系W1118和D. yakuba注射后胚胎进行保湿,对D. yakuba注射胚胎进行非退壳处理。在改进条件下W1118和D. yakuba的存活率分别为10%和3%左右。通过筛选转基因阳性果蝇,我们得出Minos在W1118和D. yakuba中的转座效率分别在32%和20%左右。我们的实验结果再一次证实了Minos在果蝇D. melanogaster中可行性。同时,该工作也初步完成了在果蝇D. yakuba 中的第一次Minos介导的转基因实验,为新基因的跨物种功能研究奠定了实验基础。在未来的工作计划中,我们将采用Minos转基因系统,把实验室目前研究的黑腹果蝇新基因导入其它物种果蝇进行功能研究。 水稻是一种重要的世界粮食作物,世界上过半的人口以水稻为主食。水稻相对别的粮食作物来讲具有较小的基因组,并且拥有较好的基因组注释,是一种理想的单子叶模式生物。植物转基因技术的发展推动着水稻功能基因组学的研究,目前水稻的转基因技术主要依赖于土壤细菌农杆菌(Agrobacterium tumefaciens)T-DNA介导的外源基因染色体插入。在自然状态下,农杆菌的T-DNA位于Ti致瘤质粒当中。它包括了一些转座元件和一些帮助T-DNA转座的毒性蛋白基因和调节基因。由于Ti质粒上的T-DNA太长,并且没有太多的酶切位点,因此自然状态的T-DNA不适合进行转基因实验。为了方便T-DNA的实际应用,研究人员创立了双载体转基因系统。T-DNA转座区被分离到出Ti载体,并且装载到另外一个适合实验操作的质粒当中,而毒性蛋白表达基因等则保留在Ti质粒上。因此,在进行T-DNA介导的转基因实验时,需要同时存在T-DNA载体和Ti质粒。 本文以“水稻注释计划数据库RAP-DB”的表达数据为参考,选择了60个高表达基因的启动子区域进行克隆。通过对T-DNA载体pCAMBIA1301 进行改造,去掉其原来的35S启动子,将预测的基因启动子克隆到该载体中并与报告基 摘要 因GUS 基因融合。通过分子克隆实验,我们得到了45个高表达基因的启动子载体。最终,为了测试这45个启动子的启动效率,我们会将它们转化到水稻愈伤组织中通过启动子融合的GUS基于表达情况来判断我们启动子的启动效率。
Resumo:
鞑靼荞麦是我国特有的农业产品,具有抗寒耐旱特性和较高的营养保健功能。荞麦的开花习性及遗传特点导致其人工杂交授粉难以成功,这成为荞麦杂交育种难以获得突破的重要原因。因此利用转基因技术导入有益基因有可能成为荞麦遗传改良的新途径,而再生及转化体系的建立是开展转基因研究的基础。 本文研究了苗龄、外植体、几种激素配比对鞑靼荞麦(Fagopyrum tataricum Gaertn.)离体培养的影响,初步建立了鞑靼荞麦离体再生体系。结果表明,鞑靼荞麦离体再生的最佳取材时间为苗龄6-8d;诱导愈伤组织的最适培养基为MS+2.0 mg/L 2,4-D+1.5 mg/L 6-BA,子叶诱愈率达75%左右,下胚轴的可高达86.62%;愈伤组织分化的最适培养基为MS 0.1mg/L IAA+2.0mg/L 6-BA+1.0 mg/L KT+0.5mg/L TDZ,下胚轴的分化率可达9.52%。下胚轴的诱愈率与分化率均高于子叶,更适于离体再生培养。培养基中加入AgNO3后,能有效降低褐化率。生根最适培养基为含有0.5mg/L NAA的1/2MS培养基,生根率在50%左右。TDZ在诱导鞑靼荞麦的愈伤组织分化出芽的过程中起到明显的促进作用,可提高分化率约20%。 在上述研究基础上,本文还对鞑靼荞麦的遗传转化体系进行了探索性研究。分别利用根癌农杆菌(Agrobacterium tumefaciens)介导法和微粒轰击法(基因枪法)对黑水苦荞下胚轴进行遗传转化。 在农杆菌介导的方法中,携带有质粒pCAMBIA2301的农杆菌菌株EHA105用于转化。载体质粒pCAMBIA2301包含有gus和npt-II 基因, 并受35s启动子驱动。研究结果表明,在侵染方式选择上,浸泡方式比吸打方式更有效,根癌农杆菌侵染的较适浓度为OD600=0.5,共培养3天,恢复培养7天,能检测到gus基因的表达。 基因枪法使用质粒pBI121,同样包含有gus和npt-II基因, 并受CaMV35s 启动子驱动。轰击距离为9cm较合适,甘露醇前处理在本研究中未表现出明显优势。 两种转化方法比较,基因枪法比农杆菌介导法更快速有效。 本研究为进一步的遗传操作研究打下基础。 Tartary buckwheat (Fagopyrum tataricum Gaertn.), the traditional and unique agricultural product of China, is a kind of crop with strong drought and cold tolerance, abundant nutrition and high medical value. Artificial hybridization is hard in buckwheat because of its flowering habits and genetic characteristics, which leads to no breakthrough in tartary buckwheat breeding. However, biotechnological approaches, especially genetic transformation for the direct introduction of good genes into tartary buckwheat for quality improvement, hold great promise. In this study, we established tartary buckwheat regeneration system in vitro. It is the foundation for genetic manipulation of this crop. The effects of seedling age, hypocotyl and cotyledon as explants, and proportions of several growth regulators were tested in tissue culture of tartary buckwheat for establishing its in vitro regeneration system. The results showed that the best seedling age for callus induction was 6 to 8 days. On the MS medium containing 2.0mg/L 2, 4-D and 1.5mg/L 6-BA, the induction rate of callus from hypocotyls was up to 86.62%, while from cotyledons was about 75%. The suitable shooting medium was the MS medium+0.1mg/L IAA+2.0mg/L 6-BA+1.0 mg/L KT+0.5mg/L TDZ, and the shooting rate from hypocotyls was 9.52%. The callus induction and shooting rates were higher from hypocotyls than from cotyledons. Browning reduced when the medium mixed with AgNO3. Half strength MS supplemented with 0.5mg/L NAA was the best for rooting, the rate was around 50% after 30 days culture. TDZ can accelerate the shoot differentiation distinctively, and it could improve the shooting rate nearly 20%. On the base of above, the explorative research of the genetic transformation in tartary buckwheat was done. In the study, hypocotyls from Heishui tartary buckwheat were transformed by Agrobacterium-mediated method and microprojectile bombardment method (gene-gun), comparatively. In Agrobacterium-mediated method, a disarmed Agrobacterium tumefaciens strain EHA105 harboring plasmid pCAMBIA2301 was used. The vector pCAMBIA2301 contains gus and npt-II genes, driven by CaMV35s promoter. The results showed that the appropriate concentration of Agrobacterium tumefaciens for infecting was OD600=0.5, and co-culture time was 3d. Seven days later after coculture, GUS expression could be tested. In particle bombardment transformation, plasmid pBI121 was used. pBI121 also contains gus and npt-II genes, driven by 35s promoter. Hypocotyls pretreated with mannitol, no effect was observed, and the suitable distance of bombardment is 9cm. Comparing with Agrobacterium-mediated method, gene-gun method is more convenient and effective. All above results could be a basic work for further study in tartary buckwheat transformation.