996 resultados para Agricultural landscapes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods: We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient fromsimple to heterogeneous landscapes. Results: Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries’ commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in some areas, but our results suggest the need of landscape-scale actions to enhance wild pollinator populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing population size and demand for food in the developing world is driving the intensification ofagriculture, often threatening the biodiversity within the farmland itself and in the surrounding land-scape. This paper quantifies bird and tree species richness, tree carbon and farmer’s gross income, andinteractions between these four variables, across an agricultural gradient in central Uganda. We showedthat higher cultivation intensities in farmed landscapes resulted in increased income but also a declinein species richness of birds and trees, and reductions in tree carbon storage. These declines were particu-larly marked with a shift from high intensity smallholder mixed cropping to plantation style agriculture.This was especially evident for birds where significant declines only occurred in plantations. Small scalefarming will likely continue to be a key source of cash income for the rural populations, and ensuring‘sustained agricultural growth’ within such systems while minimising negative impacts on biodiversityand other key ecosystem services will be a major future challenge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transformations in Slovak agriculture from the 1950s to the present day, considering both the generic (National and EU) and site-specific (local) drivers of landscape change, were analysed in five mountain study areas in the country. An interdisciplinary approach included analysis of population trends, evaluation of land use and landscape change combined with exploration of the perceptions of local stakeholders and results of previous biodiversity studies. The generic processes active from the 1950s to 1970s were critical for all study areas with impacts lasting right up until the present day. Agricultural collectivisation, agricultural intensification and land abandonment had negative effects in all study areas. However, the precise impacts on the landscape were different in the different study areas due to site-specific attributes (e.g. population trends, geographic localisation and local attitudes and opportunities), and these played a decisive role in determining the trajectory of change. Regional contrasts in rural development between these territories have increased in the last two decades, also due to the imperfect preconditions of governmental support. The recent Common Agricultural Policy developments are focused on maintenance of intensive large-scale farming rather than direct enhancement of agro-biodiversity and rural development at the local scale. In this context, local, site-specific attributes can and must form an essential part of rural development plans, to meet the demands for management of the diversity of agricultural mountain landscapes and facilitate the multifunctional role of agriculture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context Landscape heterogeneity (the composition and configuration of different landcover types) plays a key role in shaping woodland bird assemblages in wooded-agricultural mosaics. Understanding how species respond to landscape factors could contribute to preventing further decline of woodland bird populations. Objective To investigate how woodland birds with different species traits respond to landscape heterogeneity, and to identify whether specific landcover types are important for maintaining diverse populations in wooded-agricultural environments. Methods Birds were sampled from woodlands in 58 2 x 2 km tetrads across southern Britain. Landscape heterogeneity was quantified for each tetrad. Bird assemblage response was determined using redundancy analysis combined with variation partitioning and response trait analyses. Results For woodland bird assemblages, the independent explanatory importance of landscape composition and landscape configuration variables were closely interrelated. When considered simultaneously during variation partitioning, the community response was better represented by compositional variables. Different species responded to different landscape features and this could be explained by traits relating to woodland association, foraging strata and nest location. Ubiquitous, generalist species, many of which were hole-nesters or ground foragers, correlated positively with urban landcover while specialists of broadleaved woodland avoided landscapes containing urban areas. Species typical of coniferous woodland correlated with large conifer plantations. Conclusions At the 2 x 2 km scale, there was evidence that the availability of resources provided by proximate landcover types was highly important for shaping woodland bird assemblages. Further research to disentangle the effects of composition and configuration at different spatial scales is advocated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information to guide decision making is especially urgent in human dominated landscapes in the tropics, where urban and agricultural frontiers are still expanding in an unplanned manner. Nevertheless, most studies that have investigated the influence of landscape structure on species distribution have not considered the heterogeneity of altered habitats of the matrix, which is usually high in human dominated landscapes. Using the distribution of small mammals in forest remnants and in the four main altered habitats in an Atlantic forest landscape, we investigated 1) how explanatory power of models describing species distribution in forest remnants varies between landscape structure variables that do or do not incorporate matrix quality and 2) the importance of spatial scale for analyzing the influence of landscape structure. We used standardized sampling in remnants and altered habitats to generate two indices of habitat quality, corresponding to the abundance and to the occurrence of small mammals. For each remnant, we calculated habitat quantity and connectivity in different spatial scales, considering or not the quality of surrounding habitats. The incorporation of matrix quality increased model explanatory power across all spatial scales for half the species that occurred in the matrix, but only when taking into account the distance between habitat patches (connectivity). These connectivity models were also less affected by spatial scale than habitat quantity models. The few consistent responses to the variation in spatial scales indicate that despite their small size, small mammals perceive landscape features at large spatial scales. Matrix quality index corresponding to species occurrence presented a better or similar performance compared to that of species abundance. Results indicate the importance of the matrix for the dynamics of fragmented landscapes and suggest that relatively simple indices can improve our understanding of species distribution, and could be applied in modeling, monitoring and managing complex tropical landscapes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The global trend toward more intensive forms of agriculture is changing the nature of matrix habitat in agricultural areas. Removal of components of matrix habitat can affect native biota at the paddock and the landscape scale, particularly where intensification occurs over large areas. We identify the loss of paddock trees due to the proliferation of centre pivot irrigation in dryland farming areas as a potentially serious threat to the remnant biota of these areas. We used a region of south-eastern Australia as a case study to quantify land use change from grazing and dryland cropping to centre pivot irrigation over a 23-year period. We also estimated rates of paddock tree loss in 5 representative landscapes within the region over the same period. The total area affected by centre pivots increased from 0 ha in 1980 to nearly 9000 ha by 2005. Pivots were more likely to be established in areas which had originally been plains savannah and woodlands containing buloke (Allocasuarina luehmannii), a food source for an endangered bird. On average, 42% of paddock buloke trees present in 1982 were lost by 2005. In the two landscapes containing several centre pivots, the loss was 54% and 70%. This accelerated loss of important components of matrix habitat is likely to result in species declines and local extinctions. We recommend that measures to alleviate the likely negative impacts of matrix habitat loss on native biota be considered as part of regional planning strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anthropogenic land use changes drive a range of infectious disease outbreaks and emergence events and modify the transmission of endemic infections. These drivers include agricultural encroachment, deforestation, road construction, dam building, irrigation, wetland modification, mining, the concentration or expansion of urban environments, coastal zone degradation, and other activities. These changes in turn cause a cascade of factors that exacerbate infectious disease emergence, such as forest fragmentation, disease introduction, pollution, poverty, and human migration. The Working Group on Land Use Change and Disease Emergence grew out of a special colloquium that convened international experts in infectious diseases, ecology, and environmental health to assess the current state of knowledge and to develop recommendations for addressing these environmental health challenges. The group established a systems model approach and priority lists of infectious diseases affected by ecologic degradation. Policy-relevant levels of the model include specific health risk factors, landscape or habitat change, and institutional (economic and behavioral) levels. The group recommended creating Centers of Excellence in Ecology and Health Research and Training, based at regional universities and/or research institutes with close links to the surrounding communities. The centers' objectives would be 3-fold: a) to provide information to local communities about the links between environmental change and public health ; b) to facilitate fully interdisciplinary research from a variety of natural, social, and health sciences and train professionals who can conduct interdisciplinary research ; and c) to engage in science-based communication and assessment for policy making toward sustainable health and ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agricultural environments are critical to the conservation of biota throughout the world. Efforts to identify key influences on the conservation status of fauna in such environments have taken complementary approaches. Many studies have focused on the role of remnant or seminatural vegetation and emphasized the influence on biota of spatial patterns in the landscape. Others have recognized that many species use diverse ‘‘countryside’’ elements within farmland, and emphasize the benefits of landscape heterogeneity for conservation. Here, we investigated the effect of independent measures of both the spatial pattern (extent and configuration) and heterogeneity of elements (i.e., land uses/vegetation types) on bird occurrence in farm-scale agricultural mosaics in southeastern Australia. Birds were sampled in all types of elements in 27 mosaics (each 1 3 1 km) selected to incorporate variation in cover of native vegetation and the number of different element types in the mosaic. We used an information-theoretic approach to identify the mosaic properties that most strongly influenced bird species richness. Subgroups of birds based on habitat requirements responded most strongly to the extent of preferred elements in mosaics. Woodland birds were richer in mosaics with higher cover of native vegetation while open-tolerant species responded to the extent of scattered trees. In contrast, for total species richness, mosaic heterogeneity (richness of element types) and landscape context (cover of native vegetation in surrounding area) had the greatest influence. These results showed that up to 76% of landscape-level variation in richness of bird groups is attributable to mosaic properties directly amenable to management by landowners. Key implications include (1) conservation goals for farm landscapes must be carefully defined because the richness of different faunal components is influenced by different mosaic properties; (2) the extent of native vegetation is a critical influence in agricultural environments because it drives the farmscale richness of woodland birds and has a broader context effect on total bird richness in mosaics; (3) land-use practices that enhance the heterogeneity of farmland mosaics are beneficial for native birds; and (4) the cumulative effect of even small elements in farm mosaics contribute to the structural properties of entire landscapes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most ecological and evolutionary processes are thought to critically depend on dispersal and individual movement but there is little empirical information on the movement strategies used by animals to find resources. In particular, it is unclear whether behavioural variation exists at all scales, or whether behavioural decisions are primarily made at small spatial scales and thus broad-scale patterns of movement simply reflect underlying resource distributions. We evaluated animal movement responses to variable resource distributions using the grey teal (Anas gracilis) in agricultural and desert landscapes in Australia as a model system. Birds in the two landscapes differed in the fractal dimension of their movement paths, with teal in the desert landscape moving less tortuously overall than their counterparts in the agricultural landscape. However, the most striking result was the high levels of individual variability in movement strategies, with different animals exhibiting different responses to the same resources. Teal in the agricultural basin moved with both high and low tortuosity, while teal in the desert basin primarily moved using low levels of tortuosity. These results call into question the idea that broad-scale movement patterns simply reflect underlying resource distributions, and suggest that movement responses in some animals may be behaviourally complex regardless of the spatial scale over which movement occurs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the rapid agricultural transition that has occurred in the past decade, shifting cultivation remains a widespread agricultural practice in the northern uplands of Lao PDR. Little information is available on the basic socio-economic situation and respective possible patterns in shifting cultivation landscapes on a regional level. On the basis of a recent approximation of the extent of shifting cultivation landscapes for two time periods and disaggregated village level census data, this paper characterizes these landscapes in terms of key socioeconomic parameters for the whole of northern Laos. Results showed that over 550,000 people live in shifting cultivation regions. The poverty rate of this population of 46.5 % is considerably higher than the national rural rate. Most shifting cultivation landscapes are located in remote locations and a high share of the population comprises ethnic minorities, pointing to multi-dimensional marginality of these areas. We discuss whether economic growth and increased market accessibility are sufficient to lift these landscapes out of poverty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Farming and herding were introduced to Europe from the Near East and Anatolia; there are, however, considerable arguments about the mechanisms of this transition. Were it the people who moved and either outplaced, or admixed with, the indigenous hunter-gatherer groups? Or was it material and information that moved---the Neolithic Package---consisting of domesticated plants and animals and the knowledge of their use? The latter process is commonly referred to as cultural diffusion and the former as demic diffusion. Despite continuous and partly combined efforts by archaeologists, anthropologists, linguists, palaeontologists and geneticists, a final resolution of the debate has not yet been reached. In the present contribution we interpret results from the Global Land Use and technological Evolution Simulator (GLUES). GLUES is a mathematical model for regional sociocultural development, embedded in the geoenvironmental context, during the Holocene. We demonstrate that the model is able to realistically hindcast the expansion speed and the inhomogeneous space-time evolution of the transition to agropastoralism in western Eurasia. In contrast to models that do not resolve endogenous sociocultural dynamics, our model describes and explains how and why the Neolithic advanced in stages. We uncouple the mechanisms of migration and information exchange and also of migration and the spread of agropastoralism. We find that: (1) An indigenous form of agropastoralism could well have arisen in certain Mediterranean landscapes, but not in Northern and Central Europe, where it depended on imported technology and material. (2) Both demic diffusion by migration and cultural diffusion by trade may explain the western European transition equally well. (3) Migrating farmers apparently contribute less than local adopters to the establishment of agropastoralism. Our study thus underlines the importance of adoption of introduced technologies and economies by resident foragers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forest connectivity restoration is a major goal in natural resource planning. Given the high amount of abandoned cultivated lands, setting efficient methods for the reforestation of agricultural lands offers a good opportunity to face this issue. However, reforestations must be carefully planned, which poses two main challenges. In first place, to determine those agricultural lands that, once reforested, would meet more effectively the planning goals. As a further step, in order to grant the success of the activity, it is fairly advisable to select those tree species that are more adapted to each particular environment. Here we intend to give response to both requirements by proposing a sequential and integrated methodology that has been implemented in two Spanish forest districts, which are formed by several landscape types that were previously defined and characterized. Using the software Conefor Sensinode, a powerful tool for quantifying habitat availability that is based on graph theory concepts, we determined the landscapes where forest planning should have connectivity as a major concern and, afterwards, we detected the agricultural patches that would contribute most to enhance connectivity if they were reforested. The subsequent reforestation species assessment was performed within these priority patches. Using penalized logistic regressions we fitted ecological niche models for the Spanish native tree species. The models were trained with species distribution data from the Spanish Forest Map and used climatic and lithological variables as predictors. Model predictions were used to build ordered lists of suitable species for each priority patch. The lists include dominant and non dominant tree species and allow adding biodiversity goals to the reforestation planning. The result of this combined methodology is a map of agricultural patches that would contribute most to uphold forest connectivity if they were reforested and a list of suitable tree species for each patch ordered by occurrence probability. Therefore the proposed methodology may be useful for suitable and efficient forest planning and landscape designing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Una gestión más eficiente y equitativa del agua a escala de cuenca no se puede centrar exclusivamente en el recurso hídrico en sí, sino también en otras políticas y disciplinas científicas. Existe un consenso creciente de que, además de la consideración de las cambiantes condiciones climáticas, es necesaria una integración de ámbitos de investigación tales como la agronomía, planificación del territorio y ciencias políticas y económicas a fin de satisfacer de manera sostenible las demandas de agua por parte de la sociedad y del medio natural. La Política Agrícola Común (PAC) es el principal motor de cambio en las tendencias de paisajes rurales y sistemas agrícolas, pero el deterioro del medio ambiente es ahora una de las principales preocupaciones. Uno de los cambios más relevantes se ha producido con la expansión e intensificación del olivar en España, principalmente con nuevas zonas de regadío o la conversión de olivares de secano a sistemas en regadío. Por otra parte, el cambio de las condiciones climáticas podría ejercer un papel importante en las tendencias negativas de las aportaciones a los ríos, pero no queda claro el papel que podrían estar jugando los cambios de uso de suelo y cobertura vegetal sobre las tendencias negativas de caudal observadas. Esta tesis tiene como objetivo mejorar el conocimiento de los efectos de la producción agrícola, política agraria y cambios de uso de suelo y cobertura vegetal sobre las condiciones de calidad del agua, respuesta hidrológica y apropiación del agua por parte de la sociedad. En primer lugar, el estudio determina las tendencias existentes de nitratos y sólidos en suspensión en las aguas superficiales de la cuenca del río Guadalquivir durante el periodo de 1998 a 2009. Desde una perspectiva de política agraria, la investigación trata de evaluar mediante un análisis de datos de panel las principales variables, incluyendo la reforma de la PAC de 2003, que están teniendo una influencia en ambos indicadores de calidad. En segundo lugar, la apropiación del agua y el nivel de contaminación por nitratos debido a la producción del aceite de oliva en España se determinan con una evaluación de la huella hídrica (HH), teniendo en cuenta una variabilidad espacial y temporal a largo de las provincias españolas y entre 1997 y 2008. Por último, la tesis analiza los efectos de los cambios de uso de suelo y cobertura vegetal sobre las tendencias negativas observadas en la zona alta del Turia, cabecera de la cuenca del río Júcar, durante el periodo 1973-2008 mediante una modelización ecohidrológica. En la cuenca del Guadalquivir cerca del 20% de las estaciones de monitoreo muestran tendencias significativas, lineales o cuadráticas, para cada indicador de calidad de agua. La mayoría de las tendencias significativas en nitratos están aumentando, y la mayoría de tendencias cuadráticas muestran un patrón en forma de U. Los modelos de regresión de datos de panel muestran que las variables más importantes que empeoran ambos indicadores de calidad del agua son la intensificación de biomasa y las exportaciones de ambos indicadores de calidad procedentes de aguas arriba. En regiones en las que el abandono agrícola y/o desintensificación han tenido lugar han mejorado las condiciones de calidad del agua. Para los nitratos, el desacoplamiento de las subvenciones a la agricultura y la reducción de la cuantía de las subvenciones a tierras de regadío subyacen en la reducción observada de la concentración de nitratos. Las medidas de modernización de regadíos y el establecimiento de zonas vulnerables a nitratos reducen la concentración en subcuencas que muestran una tendencia creciente de nitratos. Sin embargo, el efecto de las exportaciones de nitratos procedente de aguas arriba, la intensificación de la biomasa y los precios de los cultivos presentan un mayor peso, explicando la tendencia creciente observada de nitratos. Para los sólidos en suspensión, no queda de forma evidente si el proceso de desacoplamiento ha influido negativa o positivamente. Sin embargo, los mayores valores de las ayudas agrarias aún ligadas a la producción, en particular en zonas de regadío, conllevan un aumento de las tasas de erosión. Aunque la cuenca del Guadalquivir ha aumentado la producción agrícola y la eficiencia del uso del agua, el problema de las altas tasas de erosión aún no ha sido mitigado adecuadamente. El estudio de la huella hídrica (HH) revela que en 1 L de aceite de oliva español más del 99,5% de la HH está relacionado con la producción de la aceituna, mientras que menos del 0,5% se debe a otros componentes, es decir, a la botella, tapón y etiqueta. Durante el período estudiado, la HH verde en secano y en regadío representa alrededor del 72% y 12%, respectivamente, del total de la HH. Las HHs azul y gris representan 6% y 10%, respectivamente. La producción de aceitunas se concentra en regiones con una HH menor por unidad de producto. La producción de aceite de oliva ha aumentado su productividad del agua durante 1997-2008, incentivado por los crecientes precios del aceite, como también lo ha hecho la cantidad de exportaciones de agua virtual. De hecho, las mayores zonas productoras presentan una eficiencia alta del uso y de productividad del agua, así como un menor potencial de contaminación por nitratos. Pero en estas zonas se ve a la vez reflejado un aumento de presión sobre los recursos hídricos locales. El aumento de extracciones de agua subterránea relacionadas con las exportaciones de aceite de oliva podría añadir una mayor presión a la ya estresada cuenca del Guadalquivir, mostrando la necesidad de equilibrar las fuerzas del mercado con los recursos locales disponibles. Los cambios de uso de suelo y cobertura vegetal juegan un papel importante en el balance del agua de la cuenca alta del Turia, pero no son el principal motor que sustenta la reducción observada de caudal. El aumento de la temperatura es el principal factor que explica las mayores tasas de evapotranspiración y la reducción de caudales. Sin embargo, los cambios de uso de suelo y el cambio climático han tenido un efecto compensatorio en la respuesta hidrológica. Por un lado, el caudal se ha visto afectado negativamente por el aumento de la temperatura, mientras que los cambios de uso de suelo y cobertura vegetal han compensado positivamente con una reducción de las tasas de evapotranspiración, gracias a los procesos de disminución de la densidad de matorral y de degradación forestal. El estudio proporciona una visión que fortalece la interdisciplinariedad entre la planificación hidrológica y territorial, destacando la necesidad de incluir las implicaciones de los cambios de uso de suelo y cobertura vegetal en futuros planes hidrológicos. Estos hallazgos son valiosos para la gestión de la cuenca del río Turia, y el enfoque empleado es útil para la determinación del peso de los cambios de uso de suelo y cobertura vegetal en la respuesta hidrológica en otras regiones. ABSTRACT Achieving a more efficient and equitable water management at catchment scale does not only rely on the water resource itself, but also on other policies and scientific knowledge. There is a growing consensus that, in addition to consideration of changing climate conditions, integration with research areas such as agronomy, land use planning and economics and political science is required to meet sustainably the societal and environmental water demands. The Common Agricultural Policy (CAP) is a main driver for trends in rural landscapes and agricultural systems, but environmental deterioration is now a principal concern. One of the most relevant changes has occurred with the expansion and intensification of olive orchards in Spain, taking place mainly with new irrigated areas or with the conversion from rainfed to irrigated systems. Moreover, changing climate conditions might exert a major role on water yield trends, but it remains unclear the role that ongoing land use and land cover changes (LULCC) might have on observed river flow trends. This thesis aims to improve the understanding of the effects of agricultural production, policies and LULCC on water quality conditions, hydrological response and human water appropriation. Firstly, the study determines the existing trends for nitrates and suspended solids in the Guadalquivir river basin’s surface waters (south Spain) during the period from 1998 to 2009. From a policy perspective, the research tries to assess with panel data analysis the main drivers, including the 2003 CAP reform, which are having an influence on both water quality indicators. Secondly, water appropriation and nitrate pollution level originating from the production of olive oil in Spain is determined with a water footprint (WF) assessment, considering a spatial temporal variability across the Spanish provinces and from 1997 to 2008 years. Finally, the thesis analyzes the effects of the LULCC on the observed negative trends over the period 1973-2008 in the Upper Turia basin, headwaters of the Júcar river demarcation (east Spain), with ecohydrological modeling. In the Guadalquivir river basin about 20% of monitoring stations show significant trends, linear or quadratic, for each water quality indicator. Most significant trends of nitrates are augmenting than decreasing, and most significant quadratic terms of both indicators exhibit U-shaped patterns. The panel data models show that the most important drivers that are worsening nitrates and suspended solids in the basin are biomass intensification and exports of both water quality indicators from upland regions. In regions that agricultural abandonment and/or de-intensification have taken place the water quality conditions have improved. For nitrates, the decoupling of agricultural subsidies and the reduction of the amount of subsidies to irrigated land underlie the observed reduction of nitrates concentration. Measures of irrigation modernization and establishment of vulnerable zones to nitrates ameliorate the concentration of nitrates in subbasins showing an increasing trend. However, the effect of nitrates load from upland areas, intensification of biomass and crop prices present a greater weight leading to the final increasing trend in this subbasins group, where annual crops dominate. For suspended solids, there is no clear evidence that decoupling process have influenced negatively or positively. Nevertheless, greater values of subsidies still linked to production, particularly in irrigated regions, lead to increasing erosion rates. Although agricultural production has augmented in the basin and water efficiency in the agricultural sector has improved, the issue of high erosion rates has not yet been properly faced. The water footprint (WF) assessment reveals that for 1 L Spanish olive oil more than 99.5% of the WF is related to the olive fruit production, whereas less than 0.5% is due to other components i.e. bottle, cap and label. Over the studied period, the green WF in rainfed and irrigated systems represents about 72% and 12%, respectively, of the total WF. Blue and grey WFs represent 6% and 10%, respectively. The olive production is concentrated in regions with the smallest WF per unit of product. The olive oil production has increased its apparent water productivity from 1997 to 2008 incentivized by growing trade prices, but also did the amount of virtual water exports. In fact, the largest producing areas present high water use efficiency per product and apparent water productivity as well as less nitrates pollution potential, but this enhances the pressure on the available water resources. Increasing groundwater abstractions related to olive oil exports may add further pressure to the already stressed Guadalquivir basin. This shows the need to balance the market forces with the available local resources. Concerning the effects of LULCC on the Upper Turia basin’s streamflow, LULCC play a significant role on the water balance, but it is not the main driver underpinning the observed reduction on Turia's streamflow. Increasing mean temperature is the main factor supporting larger evapotranspiration rates and streamflow reduction. In fact, LULCC and climate change have had an offsetting effect on the streamflow generation during the study period. While streamflow has been negatively affected by increasing temperature, ongoing LULCC have positively compensated with reduced evapotranspiration rates, thanks to mainly shrubland clearing and forest degradation processes. The research provides insight for strengthening the interdisciplinarity between hydrological and spatial planning, highlighting the need to include the implications of LULCC in future hydrological plans. These findings are valuable for the management of the Turia river basin, as well as a useful approach for the determination of the weight of LULCC on the hydrological response in other regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leaf surfaces provide the ecologically relevant landscapes to those organisms that encounter or colonize the leaf surface. Leaf surface topography directly affects microhabitat availability for colonizing microbes, microhabitat quality and acceptability for insects, and the efficacy of agricultural spray applications. Prior detailed mechanistic studies that examined particular fungi-plant and pollinator-plant interactions have demonstrated the importance of plant surface topography or roughness in determining the outcome of the interactions. Until now, however, it has not been possible to measure accurately the topography--i.e., the three-dimensional structure--of such leaf surfaces or to record precise changes in patterns of leaf surface elevation over time. Using contact mode atomic force microscopy, we measured three-dimensional coordinates of upper leaf surfaces of Vaccinium macrocarpon (cranberry), a perennial plant, on leaves of two age classes. We then produced topographic maps of these leaf surfaces, which revealed striking differences between age classes of leaves: old leaves have much rougher surfaces than those of young leaves. Atomic force microscope measurements were analyzed by lag (1) autocorrelation estimates of leaf surfaces by age class. We suggest that the changes in topography result from removal of epicuticular lipids and that the changes in leaf surface topography influence phylloplane ecology. Visualizing and mapping leaf surfaces permit detailed investigations into leaf surface-mediated phenomena, improving our understanding of phylloplane interactions.