968 resultados para Aging effect
Resumo:
Objective: The aim of this in vitro study was to analyze the effect of glass-ionomer cement as a liner on the dentin/resin adhesive interface of lateral walls of occlusal restorations after thermocycling.Materials and Methods: Occlusal cavities were prepared in 60 human molars, divided into six groups: no liner (1 and 4); glass-ionomer cement (GIC, Ketac Molar Easymix, 3M ESPE) (2 and 5); and resin-modified glass-ionomer cement (RMGIC, Vitrebond, 3M ESPE) (3 and 6). Resin composite (Filtek Z250, 3M ESPE) was placed after application of an adhesive system (Adper Single Bond 2, 3M ESPE) that was mixed with a fluorescent reagent (Rhodamine B) to allow confocal microscopy analysis. Specimens of groups 4, 5 and 6 were thermocycled (5 degrees C-55 degrees C) with a dwell time of 30 seconds for 5000 cycles. After this period, teeth were sectioned in approximately 0.8-mm slices. One slice of each tooth was randomly selected for confocal microscopy analysis. The other slices were sectioned into 0.8 nun x 0.8 mm beams, which were submitted to microtensile testing (MPa). Data were analyzed using two-way ANOVA and Tukey test (p < 0.05).Results: There was no detectedstatistical difference on bond strength among groups (alpha < 0.05). Confocal microscopy analysis showed a higher mean gap size in group 4(12.5 mu m) and a higher percentage of marginal gaps in the thermocycled groups. The RNIGIC liner groups showed the lowest percentage of marginal gaps.Conclusions: Lining with RMGIC resulted in less gap formation at the dentin/resin adhesive interface after artificial aging. RMGIC or GIC liners did not alter the microtensile bond strength of adhesive system/resin composite to dentin on the lateral walls of Class I restorations.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Gurjao, ALD, Goncalves, R, de Moura, RF, and Gobbi, S. Acute effect of static stretching on rate of force development and maximal voluntary contraction in older women. J Strength Cond Res 23(7): 2149-2154, 2009-The purpose of this study was to investigate, in older women, the acute effect of static stretching (SS) on both muscle activation and force output. Twenty-three older women (64.6 +/- 7.1 yr) participated in the study. The maximal voluntary contraction (MVC), rate of force development (RFD) (50, 100, 150, and 200 ms relative to onset of muscular contraction), and peak RFD (PRFD) (the steepest slope of the curve during the first 200 ms) were tested under 2 randomly separate conditions: SS and control (C). Electromyographic (EMG) activity of the vastus medialis (VM), vastus lateralis (VL), and biceps femoris (BF) muscles also was assessed. The MVC was significantly lower (p < 0.05) in the 3 trials of SS when compared with the C condition (control: 925.0 +/- 50.9 N; trial 1 : 854.3 +/- 55.3 N; trial 2 : 863.1 +/- 52.2 N; and trial 3 : 877.5 +/- 49.9 N). PRFD showed a significant decrease only for the first 2 trials of SS when compared with the C condition (control: 2672.3 +/- 259.1 N/s; trial 1 : 2296.6 +/- 300.7 N/s; and trial 2 : 2197.9 +/- 246.3 N/s). However, no difference was found for RFD (50, 100, 150, and 200 ms relative to onset of muscular contraction). The EMG activity for VM, VL, and BF was not significantly different between the C and SS conditions. In conclusion, the older women's capacity to produce muscular force decreased after their performance of SS exercises. The mechanisms responsible for this effect do not appear to be related to muscle activation. Thus, if flexibility is to be trained, it is recommended that SS does not occur just before the performance of activities that require high levels of muscular force.
Resumo:
The objective of this study was to evaluate the durability of bond strength between a resin cement and aluminous ceramic submitted to various surface conditioning methods. Twenty-four blocks (5 X 5 X 4 mm 3) of a glass-in filtrated zirconia-alumina ceramic (inCeram Zirconia Classic) were randomly divided into three surface treatment groups: ST1-Air-abrasion with 110-mu m Al2O3 particles + silanization; ST2-Laboratory tribochemical silica coating method (110-mu m Al2O3, ilO-PM Silica) (Rocatec) + silanization; ST3-Chairside tribochemical silica coating method (30-mu m SiOx) (CoJet) + silanization. Each treated ceramic block was placed in its silicone mold with the treated surface exposed. The resin cement (Panavia F) was prepared and injected into the mold over the treated surface. Specimens were sectioned to achieve nontrimmed bar specimens (14 sp/block) that were randomly divided into two conditions: (a) Dry-microtensile test after sectioning; (b) Thermocycling (TC)-(6,000X, 5-55 degrees C) and water storage (150 days). Thus, six experimental groups were obtained (11 = 50): Gr1-ST1 + dry; Gr2-ST1 + TC. Gr3-ST2 + dry; Gr4-ST2 + TC; Gr5-ST3 + dry; Gr6ST3 + TC. After microtensile testing, the failure types were noted. ST2 (25.1 +/- 11) and ST3 (24.1 +/- 7.4) presented statistically higher bond strength (MPa) than that of STI (17.5 +/- 8) regardless of aging conditions (p < 0.0001). While Gr2 revealed the lowest results (13.3 +/- 6.4), the other groups (21.7 +/- 7.4-25. 9 +/- 9.1) showed statistically no significant differences (two-way ANOVA and Tukey's test, a 0.05). The majority of the failures were mixed (82%) followed by adhesive failures (18%). Gr2 presented significantly higher incidence of ADHESIVE failures (54%) than those of other groups (p = 0.0001). Both laboratory and chairside silica coating plus silanization showed durable bond strength. After aging, airabrasion with 110-mu m Al2O3 + silanization showed the largest decrease indicating that aging is fundamental for bond strength testing for acid-resistant Arconia ceramics in order to estimate their long-term performance in the mouth. (c) 2007 Wiley Periodicals, Inc.
Resumo:
Purpose: This study evaluated the degree of conversion (DC) of four indirect resin composites (IRCs) with various compositions processed in different polymerization units and investigated the effect of thermal aging on the flexural strength and Vicker's microhardness.Materials and Methods: Specimens were prepared from four IRC materials, namely Gr 1: Resilab (Wilcos); Gr2: Sinfony (3M ESPE); Gr3: VITA VMLC (VITA Zahnfabrik); Gr4: VITA Zeta (VITA Zahnfabrik) using special molds for flexural strength test (N = 80, n = 10 per group) (25 x 2 x 2 mm(3), ISO 4049), for Vicker's microhardness test (N = 80, n = 10 per group) (5 x 4 mm(2)) and for DC (N = 10) using FT-Raman Spectroscopy. For both flexural strength and microhardness tests, half of the specimens were randomly stored in distilled water at 37 degrees C for 24 hours (Groups 1 to 4), and the other half (Groups 5 to 8) were subjected to thermocycling (5000 cycles, 5 to 55 +/- 1 degrees C, dwell time: 30 seconds). Flexural strength was measured in a universal testing machine (crosshead speed: 0.8 mm/min). Microhardness test was performed at 50 g. The data were analyzed using one-way and two-way ANOVA and Tukey's test (alpha = 0.05). The correlation between flexural strength and microhardness was evaluated with Pearson's correlation test (alpha = 0.05).Results: A significant effect for the type of IRC and thermocycling was found (p = 0.001, p = 0.001) on the flexural strength results, but thermocycling did not significantly affect the microhardness results (p = 0.078). The interaction factors were significant for both flexural strength and microhardness parameters (p = 0.001 and 0.002, respectively). Thermocycling decreased the flexural strength of the three IRCs tested significantly (p < 0.05), except for VITA Zeta (106.3 +/- 9.1 to 97.2 +/- 14 MPa) (p > 0.05) when compared with nonthermocycled groups. Microhardness results of only Sinfony were significantly affected by thermocycling (25.1 +/- 2.1 to 31 +/- 3.3 Kg/mm(2)). DC values ranged between 63% and 81%, and were not significantly different between the IRCs (p > 0.05). While a positive correlation was found between flexural strength and microhardness without (r = 0.309) and with thermocycling (r = 0.100) for VITA VMLC, negative correlations were found for Resilab under the same conditions (r = -0.190 and -0.305, respectively) (Pearson's correlation coefficient).Conclusion: Although all four IRCs presented nonsignificant DC values, flexural strength and microhardness values varied between materials with and without thermocycling.
Resumo:
The mineral and organic phases of mineralized dentin contribute co-operatively to its strength and toughness. This study tested the null hypothesis that there is no difference in nano-dynamic mechanical behavior (complex modulus-E*; loss modulus-E ''; storage modulus-E'; in GPa) of dentin hybrid layers (baseline: E*, 3.86 +/- 0.24; E '', 0.23 +/- 0.05; E', 3.85 +/- 0.24) created by an etch-and-rinse adhesive in the presence or absence of biomimetic remineralization after in vitro aging. Using scanning probe microscopy and nano-dynamic mechanical analysis, we demonstrated that biomimetic remineralization restored the nano-dynamic mechanical behavior of heavily remineralized, resin-sparse regions of dentin hybrid layers (E*, 19.73 +/- 3.85; E '', 8.75 +/- 3.97; E', 16.02 +/- 2.58) to those of the mineralized dentin base (E*, 19.20 +/- 2.42; E '', 6.57 +/- 1.96; E', 17.39 +/- 2.0) [p > 0.05]. Conversely, those resin-sparse, water-rich regions degraded in the absence of biomimetic remineralization, with significant decline [p < 0.05] in their complex and storage moduli (E*, 0.83 +/- 0.35; E '', 0.88 +/- 0.24; E', 0.62 +/- 0.32). Intrafibrillar apatite deposition preserves the integrity of resin-sparse regions of hybrid layers by restoring their nanomechanical properties to those exhibited by mineralized dentin.
Resumo:
Statement of problem. Two problems found in prostheses with soft liners are bond failure to the acrylic resin base and loss of elasticity due to material aging.Purpose. This in vitro study evaluated the effect of thermocycling on the bond strength and elasticity of 4 long-term soft denture liners to acrylic resin bases.Material and methods. Four soft lining materials (Molloplast-B, Flexor, Permasoft, and Pro Tech) and 2 acrylic resins (Classico, and Lucitone 199) were processed for testing according to manufacturers' instructions. Twenty rectangular specimens (10 X 10-mm(2) cross-sectional area) and twenty cylinder specimens (12.7-mm diameter X 19.0-mm height) for each liner/resin combination were used for the tensile and deformation tests, respectively. Specimen shape and liner thickness were standardized. Samples were divided into a test group that was thermocycled 3000 times and a control group that was stored for 24 hours in water at 37degreesC. Mean bond strength, expressed in megapascals (Wa), was determined in the tensile test with the use of a universal testing machine at a crosshead speed of 5 mm/min. Elasticity, expressed as percent of permanent deformation, was calculated with an instrument for measuring permanent deformation described in ADA/ANSI specification 18. Data from both tests were examined with 1-way analysis of variance and a Tukey test, with calculation of a Scheffe interval at a 95% confidence level.Results. In the tensile test under control conditions, Molloplast-B (1.51 +/- 0.28 MPa [mean SD]) and Pro Tech (1.44 +/- 0.27 MPa) liners had higher bond strength values than the others (P < .05). With regard to the permanent deformation test, the lowest values were observed for Molloplast-B (0.48% +/- 0.19%) and Flexor (0.44% +/- 0.14%) (P < .05). Under thermocycling conditions, the highest bond strength occurred with Molloplast-B (1.37 +/- 0.24 MPa) (P < .05) With regard to the deformation test, Flexor (0.46% +/- 0.13%) and Molloplast-B (0.44% +/- 0.17%) liners had lower deformation values than the others (P < .05).Conclusion. The results of this in vitro study indicated that bond strength and permanent deformity values of the 4 soft denture liners tested varied according to their chemical composition. These tests are not completely valid for application to dental restorations because the forces they encounter are more closely related to shear and tear. However, the above protocol serves as a good method of investigation to evaluate differences between thermocycled and control groups.
Resumo:
The effect of temperature on the oxalic acid catalyzed sono-hydrolysis of tetramethoxysilane (TMOS) was studied by means of a heat flux calorimetric method. The activation energy of the process was measured as (24.5 +/- 0.8) kJ/mol in the temperature range between 10 and 50 degreesC. The structural characteristics of the resulting sonogels, after long period of aging in saturated conditions, were studied by means of small angle X-ray scattering. The structure can be described as formed by similar to2.7 nm mean size mass fractal-like aggregates (clusters) of primary silica particles of similar to0.3 nm mean size, all imbibed in a liquid phase. The average mass fractal dimension of the clusters was found to be 2.58. The primary particle density was estimated as 2.23 g/cm(3), in good agreement with the value frequently quoted for fused silica. The volume fraction of the clusters, in the saturated sonogels was estimated as about 28%. The moment in which the meniscus of the liquid phase penetrates into the clusters under rapid evaporation process has been detected by an inflection in the first derivative of the curve of weight loss in a simple thermogravimetric test. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Although drought and defoliation stress have been shown to reduce soybean [Glycine max (L.). Merr.] yield, little information has been published regarding their effects on soybean seed quality. Field experiments were conducted in 1986, 1987, and 1989 to evaluate the effect of drought and defoliation (1989 only) stress during soybean seed development on seed germination and vigor. Essex (MG [maturity group] V) and Union (MG III) were grown in 1986 and 1987, and Harper (MG III) and McCall (MG 00) in 1989. Moisture treatments were either well watered or drought stressed during seed development (R5 to R7). In 1989, a total defoliation treatment was also imposed at R6 as an additional stress factor. There were significant reductions in yield and yield components following drought stress in all 3 yr and following defoliation in 1989. Leaf conductance and transpiration also decreased in the drought stress treatments. There was no effect of drought stress on seed germination or seed vigor as measured by accelerated aging germination and the cold test across the four cultivars (determinate and indeterminate) and 3 yr. In 1989 slight changes in 3-d germination and conductivity occurred for some drought stress treatments. Most of this response, however, was related to increased occurrence of hard seed, which does not represent an indication of a change in vigor. Seed germination and vigor were significantly reduced for small, flat, shriveled, and underdeveloped seeds that only occurred following defoliation. These seeds represented a small portion of the seed lot that would normally be removed during conditioning. The data suggest that drought stress would have no effect on seed germination or vigor, unless the stress was severe enough to produce shriveled, flat, underdeveloped seeds.
Resumo:
The purpose of this study was to evaluate the effect of different heat-treatment strategies for a ceramic primer on the shear bond strength of a 10-methacryloyloxydecyl-dihydrogen-phosphate (MDP)-based resin cement to a yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramic. Specimens measuring 4.5 x 3.5 x 4.5 mm(3) were produced from Y-TZP presintered cubes and embedded in polymethyl methacrylate (PMMA). Following finishing, the specimens were cleaned using an ultrasound device and distilled water and randomly divided into 10 experimental groups (n=14) according to the heat treatment of the ceramic primer and aging condition. The strategies used for the experimental groups were: GC (control), without primer; G20, primer application at ambient temperature (20 degrees C); G45, primer application + heat treatment at 45 degrees C; G79, primer application + heat treatment at 79 degrees C; and G100, primer application + heat treatment at 100 degrees C. The specimens from the aging groups were submitted to thermal cycling (6000 cycles, 5 degrees C/55 degrees C, 30 seconds per bath) after 24 hours. A cylinder of MDP-based resin cement (2.4 mm in diameter) was constructed on the ceramic surface of the specimens of each experimental group and stored for 24 hours at 37 degrees C. The specimens were submitted to a shear bond strength test (n=14). Thermal gravimetric analysis was performed on the ceramic primer. The data obtained were statistically analyzed by two-way analysis of variance and the Tukey test (alpha=0.05). The experimental group G79 without aging (7.23 +/- 2.87 MPa) presented a significantly higher mean than the other experimental groups without aging (GC: 2.81 +/- 1.5 MPa; G20: 3.38 +/- 2.21 MPa; G100: 3.96 +/- 1.57 MPa), showing no difference from G45 only (G45: 6 +/- 3.63 MPa). All specimens of the aging groups debonded during thermocycling and were considered to present zero bond strength for the statistical analyses. In conclusion, heat treatment of the metal/zirconia primer improved bond strength under the initial condition but did not promote stable bonding under the aging condition.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Electrolytes may modify the physical-chemical characteristics of colloidal particle interfaces in suspension, which can favour gel or aggregate formation. The influence of NH4Cl loading on the aggregation and gelation of SnO2 colloidal suspensions was investigated using measurements of rheology, turbidity and infrared spectra. A rapid aggregate growth for samples with Cl- > 20 mM was observed. With increasing age, gelation was observed due to formation of interaggregate bonds. For concentration of Cl- between 20 and 9 mM, the aggregation process was slower allowing the formation of gel with a network which was not destroyed as the gel was submitted to a small rate of shear. As aging continues, the condensation reaction between OH groups gave rise to the formation of Sn-O bonds, irrespective of the electrolyte loading. © 1992 Elsevier Science Publishers B.V. All rights reserved.
Resumo:
The influence of fetal calf serum alone (FCS) or associated with proestrous (FCS+PCS), estrous (FCS+ECS) or metaestrous (FCS+MCS) cow serum added to the culture medium and of the steroids produced by co-cultured granulosa cells were evaluated in terms of the in vitro maturation (IVM) and fertilization (IVF) of bovine oocytes. Supplementation of the medium with FCS+ECS and FCS+MCS resulted in higher proportions of oocytes that reached metaphase II (96.0% and 93.3%, respectively) and in higher proportions of embryos that reached the four- and eight-cell/morula stages (51.9% and 65.6%, respectively), whereas the supplementation with FCS and FCS+PCS resulted in only 79.2% and 67.5%, respectively, of matured oocytes and 26.7% and 34.3%, respectively, of cleaved embryos. These findings show that the best IVM and IVF were obtained at lower concentrations of estradiol produced by co-cultured granulosa cells (supplementation with FCS+ECS: 10.3 ng/ml and FCS+MCS: 2.1 ng/ml), whereas the worst results in IVM and IVF occurred at higher concentrations of estradiol that were obtained with FCS (33.1 ng/ml) and FCS+PCS (19.9 ng/ml) supplementation. These data suggest an inhibitory effect of estradiol on resumption of oocyte meiosis in vitro.