999 resultados para Age, oxygen isotope


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates changes in the upper water column hydrography at Site 851 of the eastern tropical Pacific Ocean since the late Pliocene, using the oxygen and carbon isotopic composition of three species of planktonic foraminifers, each calcifying at different depths in the photic zone. The upper ocean seasonal hydrography in this region responds to the seasonally changing trade winds and thus is expected to respond to past changes in trade winds. One major change occurs at about 1.5 Ma, when the thermocline adjusts from a deep position to a shallower position. The thermocline remains in a relatively shallow position throughout the record up to recent time, with slight variations occurring synchronously with glacial/interglacial stages. In glacials, SSTs are probably a few degrees cooler and the thermocline is slightly deeper. From our knowledge of seasonal and interannual adjustments of the thermocline in this location, a deeper thermocline might be interpreted as either a decrease in the strength of the Equatorial Undercurrent (EUC) that results from lower mean wind strength or an increase in the Equatorial Countercurrent (ECC), which results from an increase in the strength of the southeasterly trade winds. A major shift from higher to lower carbon isotope values occurred at about 1.9 Ma, marking a transition to reduced planktonic-benthic d13C differences after 1.9 Ma. The carbon isotopic data indicate that changes in the carbon isotopic composition of intermediate upwelling water occurs at higher frequencies than the glacial/interglacial changes in ice volume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paleoceanographic variability at southern high latitude Ocean Drilling Program (ODP) Site 747 was investigated in this study through the interval which spans the Middle Miocene Climate Transition (MMCT). Between 15.0 and 12.2 million years ago (Ma), foraminiferal d18O records derived from both benthic (Cibicidoides spp.) and planktonic taxa (Globorotalia praescitula and Globigerina bulloides) reveal a history of changes in water column thermal and salinity structure and a strong imprint of seasonality. Prior to the MMCT, in the interval between 14.35 and 13.9 Ma, G. bulloides displays relatively high d18O values similar to those of G. praescitula, interpreted to indicate weakening of the thermocline and/or increased seasonality with cooler early-spring and/or late-fall temperatures. Following this interval, G. bulloidesd18O values diverge significantly from benthic and G. praescitula values, with G. bulloides values remaining relatively low for at least 600 kyr following the benthic foraminiferal d18O shift during the MMCT at ~13.9 Ma. This divergence in d18O records occurs in direct association with the Mi3 cooling and glaciation event and may suggest: (1) a strengthening of the vertical temperature gradient, with greater cooling of deep waters than surface waters, (2) changes in the depth habitat of G. bulloides, (3) changes in the dominant season of G. bulloides calcification, (4) modification of surface-water d18O values in association with enhanced sea-ice formation, (5) increased surface-water carbonate ion concentration, and/or (6) a significant decrease in surface-water salinity across the MMCT. The first of these possible scenarios is not likely, particularly in light of recent Mg/Ca evidence for significant surface-water cooling in the Southern Ocean associated with the MMCT. Of the remaining possibilities, we favor a change in surface salinity to explain the observed trends in d18O values and hypothesize that surface salinity may have decreased by up to 2 salinity units at ~13.9 Ma. In this scenario, the development of a lower-salinity Antarctic surface layer coincided with regional cooling of both surface and deep waters of the Southern Ocean during the Mi3 glaciation of East Antarctica, and contributed into the dominance of Neogloboquadrina spp. between 13.8 and 13.2 Ma. Additionally, the distinct patterns observed in planktonic foraminiferal d18O records spanning the MMCT correspond with changes in the vertical d13C gradient between planktonic and benthic foraminiferal records and major changes in planktonic foraminiferal assemblages at Site 747, providing further evidence of the environmental significance of this climatic transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benthic oxygen and carbon isotopic results from a depth transect on Maud Rise, Antarctica, provide the first evidence for Warm Saline Deep Water (WSDW) in the Paleogene oceans. Distinct reversals occur in the oxygen isotopic gradient between the shallower Hole 689B (Eocene depth ~1400 m; present-day depth 2080 m) and the deeper Hole 690B (Eocene depth ~2250 m; present-day depth 2914 m). The isotopic reversals, well developed by at least 46 Ma (middle middle Eocene), existed for much of the remaining Paleogene. We do not consider these reversals to be artifacts of differential diagenesis between the two sites or to have resulted from other potentially complicating factors. This being so, the results show that deep waters at Hole 690B were significantly warmer than deep waters at the shallower Hole 689B. A progressive decrease and eventual reversal in benthic to planktonic delta18O gradients in Hole 690B, demonstrate that the deeper waters became warmer relative to Antarctic surface waters during the Eocene. The warmer deep waters of the Paleogene are inferred to have been produced at middle to low latitudes, probably in the Tethyan region which contained extensive shallow-water platforms, ideal sites for the formation of high salinity water through evaporative processes. The ocean during the Eocene, and perhaps the Paleocene, is inferred to have been two-layered, consisting of warm, saline deep waters formed at low latitudes and overlain by cooler waters formed at high latitudes. This thermospheric ocean, dominated by halothermal circulation we name Proteus. The Neogene and modern psychrospheric ocean Oceanus is dominated by thermohaline circulation of deep waters largely formed at high latitudes. An intermediate condition existed during the Oligocene, with a three-layered ocean that consisted of cold, dense deep waters formed in the Antarctic (Proto-AABW), overlain by warm, saline deep waters from low latitudes, and in turn overlain by cool waters formed in the polar regions. This we name Proto-oceanus which combined both halothermal and thermohaline processes. The sequence of high latitude, major, climatic change inferred from the oxygen isotopic records is as follows: generally cooler earlier Paleocene; warming during the late Paleocene; climax of Cenozoic warmth during the early Eocene and continuing into the early middle Eocene; cooling mainly in a series of steps during the remainder of the Paleogene. Superimposed upon this Paleogene pattern, the Paleocene/Eocene boundary is marked by a brief but distinct warming that involved deep to surface waters and a reduction in surface to deep carbon and oxygen isotopic gradients. This event coincided with major extinctions among the deep-sea benthic foraminifers as shown by Thomas (1990 doi:10.2973/odp.proc.sr.113.123.1990). Salinity has played a major role in deep ocean circulation, and thus paleotemperatures cannot be inferred directly from the oxygen isotopic composition of Paleogene benthic foraminifers without first accounting for the salinity effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The carbonate shell of the bivalve Arctica islandica has been recognized, for more than a decade, as a potentially important marine geochemical biorecorder owing to this species' great longevity (200+ years) and wide geographic distribution throughout the northern North Atlantic Ocean, a region vital to global climate and ocean circulation. However, until now this potential has not been realized owing to the difficulty of precisely sampling the shell of this slow growing species. Using newly available automated microsampling techniques combined with micromass stable isotope mass spectrometry, a stable oxygen isotope record (1956-1957 and 1961-1970) has been obtained from a live-captured, 38-year-old A. islandica specimen collected near the former position of the Nantucket Shoals Lightship (41°N. 69°W). The shell's delta18O signal is compared with an expected signal derived from ambient bottom temperature and salinity data recorded at the lightship for the same period. The results show that A islandica's delta18O record (1) is in phase with its growth banding, confirming the annual periodicity of this species' growth bands, (2) is in oxygen isotopic equilibrium with the ambient seawater, (3) shows a consistent shell growth shutdown temperature of ~6°C. which translates into an ~8-month (May-December) shell growth period at this location, and (4) records the ambient bottom temperature with a precision of ~ +/-1.2°C. These results add important information on the life history of this commercially important shellfish species and demonstrate that A. islandica shells can be used to reconstruct inter- and intra-annual records of the continental shelf bottom temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen isotopes in marine sulfate (d18O SO4) measured in marine barite show variability over the past 10 million years, including a 5per mil decrease during the Plio-Pleistocene, with near-constant values during the Miocene that are slightly enriched over the modern ocean. A numerical model suggests that sea level fluctuations during Plio-Pleistocene glacial cycles affected the sulfur cycle by reducing the area of continental shelves and increasing the oxidative weathering of pyrite. The data also require that sulfate concentrations were 10 to 20% lower in the late Miocene than today.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution records from IMAGES core MD95-2011 in the eastern Norwegian Sea provide evidence for relatively large- and small-scale high-latitude climate variability throughout the Holocene. During the early and mid-Holocene a situation possibly driven by consistent stronger westerlies increased the eastward influence of Arctic intermediate and near-surface waters. For the late Holocene a relaxation of the atmospheric forcing resulted in increased influence of Atlantic water. The main changes in Holocene climate show no obvious connection to changing solar irradiance, and spectral analysis reveals no consistent signature for any periodic behavior of Holocene climate at millennial or centennial timescales. There are, however, indications of consistent multidecadal variability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in the local freshwater budget over the last 22,000 years have been estimated from a sediment core located in the southern South China Sea (SCS) using a combined approach of Mg/Ca and oxygen isotopes on the planktonic foraminifera Globigerinoides ruber (white) sensu stricto (s.s.). Core MD01-2390 (06°28,12N, 113°24,56E; water depth 1591 m) is located near the glacial paleo-river mouths of the Baram, Rajang and North Sunda/Molengraaff Rivers that drained the exposed Sunda Shelf. The delta18Oseawater record reveals lower average values (-0.96±0.18 per mil) during the Last Glacial Maximum (LGM) when compared with modern values (-0.54±0.18 per mil). Low salinity during the LGM is interpreted to reflect a higher freshwater contribution due to a greater proximity of the core site to the mouths of the Baram, Rajang and North Sunda/Molengraaff Rivers at that time. A general deglacial increasing trend in salinity due to the progressive landward displacement of the coastline during deglacial shelf flooding is punctuated by several short-term shifts towards higher and lower salinity that are likely related to abrupt changes in the intensity of the East Asian summer monsoon. Thus, the deglacial delta18Oseawater changes reflect the combined effects of sea-level-induced environmental changes on the shelf (e.g. phases of retreat and breakdown of the shelf drainage systems) and East Asian monsoon climate change. Lower salinity than at present during the Early Holocene may be attributed to an increase in summer monsoonal precipitation that is corroborated by previous marine and terrestrial studies that report a Preboreal-Early Holocene monsoon optimum in the Asian monsoon region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Paleocene-Eocene Thermal Maximum (PETM; ~56 Ma) is associated with abrupt climate change, carbon cycle perturbation, ocean acidification, as well as biogeographic shifts in marine and terrestrial biota that were largely reversed as the climatic transient waned. We report a clear exception to the behavior of the PETM as a reversing climatic transient in the eastern North Atlantic (Deep-Sea Drilling Project Site 401, Bay of Biscay) where the PETM initiates a greatly prolonged environmental change compared to other places on Earth where records exist. The observed environmental perturbation extended well past the d13C recovery phase and up to 650 kyr after the PETM onset according to our extraterrestrial 3He-based age-model. We observe a strong decoupling of planktic foraminiferal d18O and Mg/Ca values during the PETM d13C recovery phase, which in combination with results from helium isotopes and clay mineralogy, suggests that the PETM triggered a hydrologic change in western Europe that increased freshwater flux and the delivery of weathering products to the eastern North Atlantic. This state change persisted long after the carbon-cycle perturbation had stopped. We hypothesize that either long-lived continental drainage patterns were altered by enhanced hydrological cycling induced by the PETM, or alternatively that the climate system in the hinterland area of Site 401 was forced into a new climate state that was not easily reversed in the aftermath of the PETM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The final phase of the closure of the Panamanian Gateway and the intensification of Northern Hemisphere Glaciation (NHG) both occurred during the Late Pliocene. Glacial-interglacial (G-IG) variations in sea level might, therefore, have had a significant impact on the remaining connections between the East Pacific and the Caribbean. Here, we present combined foraminiferal Mg/Ca and d18O measurements from Ocean Drilling Program (ODP) Site 1241 from the East Pacific and ODP Site 999 from the Caribbean. The studied time interval covers the first three major G-IG Marine Isotope Stages (MIS 95-100, ~2.5 Ma) after the intensification of NHG. Analyses were performed on the planktonic foraminifera Neogloboquadrina dutertrei and Globigerinoides sacculifer, representing water mass properties in the thermocline and the mixed-layer, respectively. Changes in sea water temperature, relative salinity, and water column stratification strongly suggest that the Panamanian Gateway temporarily closed during glacial MIS 98 and 100, as a result of changes in ice volume equivalent to a drop in sea level of 60-90 m. Reconstructed sea surface temperatures (SST) from G. sacculifer show a glacial decrease of 2.5°C at Site 1241, but increases of up to 3°C at Site 999 during glacial MIS 98 and 100 suggesting that the Panamanian Gateway closed during these glacial periods. The Mg/Ca-temperatures of N. dutertrei remain relatively stable in the East Pacific, but do show a 3°C warming in the Caribbean at the onset of these glacial periods suggesting that the closing of the gateway also changed the water column stratification. We infer that the glacial closure of the gateway allowed the Western Atlantic Warm Pool to extend into the southern Caribbean, increasing SST (G. sacculifer) and deepening the thermocline (N. dutertrei). Additionally, ice volume appears to have become large enough during MIS 100 to survive the relatively short lasting interglacial MIS 99 so that the gateway remained closed. Towards the end of MIS 98, during MIS 97 and into MIS 96 temperatures on both sides are mostly similar suggesting water masses exchanged again. Additionally, Caribbean variations in SST and d18Owater follow a precession-like cyclicity rather than the obliquity-controlled variations characteristic of the East-Pacific and many other tropical areas, suggesting that regional atmospheric processes related to the trade winds and the Intertropical Convergence Zone (ITCZ) had a dominant impact in the Caribbean.