967 resultados para Age, 14C calibrated, CalPal online (Danzeglocke et al. 2012)
Resumo:
The Sulu Sea is located in the 'warm pool' of the western Pacific Ocean, where mean annual temperatures are the highest of anywhere on Earth. Because this large heat source supplies the atmosphere with a significant portion of its water vapour and latent heat, understanding the climate history of the region is important for reconstructing global palaeoclimate and for predicting future climate change. Changes in the oxygen isotope composition of planktonic foraminifera from Sulu Sea sediments have previously been shown to reflect changes in the planetary ice volume at glacial-interglacial and millenial timeseales, and such records have been obtained for the late Pleistocene epoch and the last deglaciation (Linsley and Thunell, 1990, doi:10.1029/PA005i006p01025; Lindley and Dunbar, 1994, doi:10.1029/93PA03216; Kudrass et al., 1991, doi:10.1038/349406a0). Here I present results that extend the millenial time resolution record back to 150,000 years before present. On timescales of around 10,000 years, the Sulu Sea oxygen-isotope record matches changes in sea level deduced from coral terraces on the Huon peninsula (Chappell and Shackleton, doi:10.1038/324137a0). This is particularly the case during isotope stage 3 (an interglacial period 23,000 to 58,000 years ago) where the Sulu Sea oxygen-isotope record deviates from the SPECMAP deep-ocean oxygen-isotope record (Imbrie et al., 1984). Thus these results support the idea (Chappell and Shackleton, doi:10.1038/324137a0; Shackleton, 1987, doi:10.1016/0277-3791(87)90003-5) that there were higher sea levels and less continental ice during stage 3 than the SPECMAP record implies and that sea level during this interglacial was just 40-50 metres below present levels. The subsequent rate of increase in continental ice volume during the return to full glacial conditions was correspondingly faster than previously thought.
Resumo:
Millennial-scale variability in the behavior of North Pacific Intermediate Water during the last glacial and deglacial period, and its association with Dansgaard-Oeschger (D-O) cycles and Heinrich events, are examined based on benthic foraminiferal oxygen and carbon isotopes (d18Obf and d13Cbf) and %CaCO3 using a sediment core recovered from the northeastern slope of the Bering Sea. A suite of positive d18Obf excursions at intermediate depths of the Bering Sea, which seem at least in part associated with increases in the d18Obf gradients between the Bering and Okhotsk Seas, suggest the Bering Sea as a proximate source of intermediate water during several severe stadial episodes in the last glacial and deglacial period. Absence of such d18Obf gradients during periods of high surface productivity in the Bering and Okhotsk Seas, which we correlate to D-O interstadials, suggests a reduction in intermediate water production in the Bering Sea and subsequent introduction of nutrient-rich deep waters from the North Pacific into intermediate depths of the Bering Sea. We argue that a reorganization of atmospheric circulation in the high-latitude North Pacific during severe cold episodes in the last glacial and deglacial period created favorable conditions for brine rejection in the northeastern Bering Sea. The resulting salinity increase in the cold surface waters could have initiated intermediate (and deep) water formation that spread out to the North Pacific.
Resumo:
Diatom assemblages were employed to study temporal changes of Siberian river runoff on the Laptev Sea shelf. Using a correlation between freshwater diatoms (%) in core-top sediments and summer surface water salinities from the inner Kara Sea, salinity conditions were reconstructed for a site northeast of the Lena River Delta (present water depth 32 m) since 9 calendar years (cal) ka. The reconstruction indicate a strong, near-coastal, and river-influenced environment at the site until about 8.6 cal ka. Corroborated by comparison with other proxy records from further to the east, surface salinities increased from 9 to 14 until about 7.4 cal ka, owing to ongoing global sea level rise and synchronous southward shift of the coastline. Although riverine water became less influential at the site since then, salinities still varied between 12.5 and 15, particularly during the last 3.5 kyr. These more recent salinity fluctuations agree well with reconstructions from just north of the Lena Delta, emphasizing the strong linkage between shelf hydrography and riverine discharge patterns in Arctic Siberia.
Resumo:
A decadal resolution time series of sea surface temperature (SST) spanning the last two millennia is reconstructed by combining a proxy record from a new sediment sequence with previously published data from core MD99-2275, north of Iceland. The alkenone based SST reconstruction is validated with historic observational data and compared to a new similar temporal resolution reconstruction obtained from sediment core RAPiD21-3K, in the subpolar North Atlantic. The two SST paleorecords show consistent multidecadal scale coolings throughout the interval and similar expressions during the contrasted climatic periods 'colloquially known' as the Medieval Climatic Anomaly (MCA) and Little Ice Age (LIA). In order to further understand the temporal and spatial SST variations and investigate the influence of natural forcings on the observed SST changes during the last millennium, we compare our time series to simulations using the Institut Pierre-Simon Laplace IPSLCM4-v2 climate model. This comparison highlights the potential importance of volcanism as a natural forcing driving coherent abrupt cooling events captured in the subpolar North Atlantic records.