868 resultados para African population growth
Resumo:
This paper reviews the development of Greater Amman, Jordan noting that the vast urban expansion that has occurred over the last fifty years has led to the desertification of rare fertile lands, following the fragmented and scattered territorial expansion of the city. The future scenario for planning in Greater Amman is analyzed in respect of proposals outlined in the Metropolitan Growth Plan of 2008, which assumes a rapid population growth from 2,200,000 persons in 2006, to approximately 6,500,000 by 2025. The concentration of more than 39 per cent of the national population of Jordan in Greater Amman threatens the transformation of former distinct settlement pattern into a distinctive continuous urban zone, aggravating problems of infrastructural provision, water needs, agricultural lands, and leaving unresolved problems of land inflation, poor urban standards and housing shortages. In conclusion, the environmental implications of the Amman Metropolitan Growth Plan are analysed, and it is suggested that an alternative approach is needed, based on clear principles of sustainable urban development.
Resumo:
Massive economic and population growth, and urbanization are expected to lead to a tripling of anthropogenic emissions in southern West Africa (SWA) between 2000 and 2030. However, the impacts of this on human health, ecosystems, food security, and the regional climate are largely unknown. An integrated assessment is challenging due to (a) a superposition of regional effects with global climate change, (b) a strong dependence on the variable West African monsoon, (c) incomplete scientific understanding of interactions between emissions, clouds, radiation, precipitation, and regional circulations, and (d) a lack of observations. This article provides an overview of the DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) project. DACCIWA will conduct extensive fieldwork in SWA to collect high-quality observations, spanning the entire process chain from surface-based natural and anthropogenic emissions to impacts on health, ecosystems, and climate. Combining the resulting benchmark dataset with a wide range of modeling activities will allow (a) assessment of relevant physical, chemical, and biological processes, (b) improvement of the monitoring of climate and atmospheric composition from space, and (c) development of the next generation of weather and climate models capable of representing coupled cloud-aerosol interactions. The latter will ultimately contribute to reduce uncertainties in climate predictions. DACCIWA collaborates closely with operational centers, international programs, policy-makers, and users to actively guide sustainable future planning for West Africa. It is hoped that some of DACCIWA’s scientific findings and technical developments will be applicable to other monsoon regions.
Resumo:
Context. Rattus tanezumi (the Asian house rat) is the principal rodent pest of rice and coconut crops in the Philippines. Little is known about the population and breeding ecology of R. tanezumi in complex agroecosystems; thus, current methods of rodent control may be inappropriate or poorly implemented. Aims. To investigate the habitat use, population dynamics and breeding biology of R. tanezumi in complex lowland agroecosystems of the Sierra Madre Biodiversity Corridor, Luzon, and to develop ecologically based rodent management (EBRM) strategies that will target specific habitats at specific times to improve cost-efficiency and minimise non-target risks. Methods. An 18-month trapping study was conducted in rice monoculture, rice adjacent to coconut, coconut groves, coconut-based agroforest and forest habitats. Trapped animals were measured, marked and assessed for breeding condition. Key results. Five species of rodent were captured across all habitats with R. tanezumi the major pest species in both the rice and coconut crops. The stage of the rice crop was a major factor influencing the habitat use and breeding biology of R. tanezumi. In rice fields, R. tanezumi abundance was highest during the tillering to ripening stages of the rice crop and lowest during the seedling stage, whereas in coconut groves abundance was highest from the seedling to tillering stage of nearby rice crops. Peaks in breeding activity occurred from the booting stage of the rice crop until just after harvest, but >10% of females were in breeding condition at each month of the year. Conclusions. In contrast with the practices applied by rice farmers in the study region, the most effective time for lethal management based on the breeding ecology of R. tanezumi is likely to be during the early stages of the rice crop, before the booting stage. Farmers generally apply control actions as individuals. We recommend coordinated community action. Continuous breeding throughout the year may necessitate two community campaigns per rice cropping season. To limit population growth, the most effective time to reduce nesting habitat is from the booting stage until harvest. Implications. By adopting EBRM strategies, we expect a reduction in costs associated with rodent control, as well as improved yield and reduced risk to non-target species.
Resumo:
Human population growth and resource use, mediated by changes in climate, land use, and water use, increasingly impact biodiversity and ecosystem services provision. However, impacts of these drivers on biodiversity and ecosystem services are rarely analyzed simultaneously and remain largely unknown. An emerging question is how science can improve the understanding of change in biodiversity and ecosystem service delivery and of potential feedback mechanisms of adaptive governance. We analyzed past and future change in drivers in south-central Sweden. We used the analysis to identify main research challenges and outline important research tasks. Since the 19th century, our study area has experienced substantial and interlinked changes; a 1.6°C temperature increase, rapid population growth, urbanization, and massive changes in land use and water use. Considerable future changes are also projected until the mid-21st century. However, little is known about the impacts on biodiversity and ecosystem services so far, and this in turn hampers future projections of such effects. Therefore, we urge scientists to explore interdisciplinary approaches designed to investigate change in multiple drivers, underlying mechanisms, and interactions over time, including assessment and analysis of matching-scale data from several disciplines. Such a perspective is needed for science to contribute to adaptive governance by constantly improving the understanding of linked change complexities and their impacts.
Resumo:
The maternal and paternal genetic profile of Guineans is markedly sub-Saharan West African, with the majority of lineages belonging to L0-L3 mtDNA sub-clusters and E3a-M2 and E1-M33 Y chromosome haplogroups. Despite the sociocultural differences among Guinea-Bissau ethnic groups,marked by the supposedly strict admixture barriers, their genetic pool remains largely common. Their extant variation coalesces at distinct timeframes, from the initial occupation of the area to later inputs of people. Signs of recent expansion in mtDNA haplogroups L2a-L2c and NRY E3a-M2 suggest population growth in the equatorial western fringe, possibly supported by an early local agricultural centre, and to which the Mandenka and the Balanta people may relate. Non-West African signatures are traceable in less frequent extant haplogroups, fitting well with the linguistic and historical evidence regarding particular ethnic groups: the Papel and Felupe-Djola people retain traces of their putative East African relatives; U6 and M1b among Guinea-Bissau Bak-speakers indicate partial diffusion to Sahel of North African lineages; U5b1b lineages in Fulbe and Papel represent a link to North African Berbers, emphasizing the great importance of post-glacial expansions; exact matches of R1b-P25 and E3b1-M78 with Europeans likely trace back to the times of the slave trade.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The introduction of alien species is one of the main threats to the conservation of native species, especially in island ecosystems. Here, we report on the population growth of 15 species of mammals introduced in 1983 on the island of Anchieta, an 828 ha land-bridge island in southeastern Brazil. We estimated the density of mammals through 296 km of line transect census. Five species introduced became extinct (coypu, brocket deer, six-banded armadillo, nine-banded armadillo, maned three-toed sloth); six became over-abundant (marmoset, coati, agouti, seven-banded armadillo, and capybara); one has a stable population (capuchin monkey). Anchieta Island has the highest density of mammals in the entire Atlantic forest (486.77 ind/km(2)), especially nest predators (232.83 ind/km(2)) and herbivores (253.58 ind/km(2)). Agoutis (Dasyprocta spp.) and marmosets (Callithrix penicillata) were, by far, the species with the highest population growth. The high density of mammals in this island may have strong consequences for plant recruitment and bird diversity.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
El Observatorio Demográfico 2013 contiene indicadores seleccionados de la revisión de 2013 de las estimaciones y proyecciones de la población analizada. Las cifras contenidas en esta publicación constituyen una revisión de las presentadas en el Observatorio 2012. En esta oportunidad, se actualizaron las estimaciones y proyecciones de la población urbana y rural desde 1950 hasta 2050, extendiéndose el período de estimación y de proyección. La metodología utilizada es la habitual, pero en esta oportunidad se ajustaron las tendencias observadas para lograr una proyección de más largo plazo en los países que no cuentan con censos de la década de 2010. En las próximas ediciones se irán incorporando las nuevas estimaciones y proyecciones de población en que se consideren los censos más recientes y otras fuentes a medida que estén disponibles. Como es habitual, se incluye un capítulo en el que se analizan las tendencias demográficas. En esta oportunidad, se examinan el crecimiento y la perspectiva de la población urbana en la región. En las notas técnicas de este Observatorio se enumeran las fuentes de datos consideradas para cada país. Cabe señalar que la información correspondiente a las estimaciones y proyecciones de la población nacional, urbana, rural y económicamente activa está disponible en formato de hojas de cálculo en el sitio web del CELADE-División de Población de la CEPAL (http://www.eclac.org/celade/).
Resumo:
El Observatorio Demográfico 2015 reúne indicadores seleccionados de la revisión de 2015 de las estimaciones y proyecciones de la población nacional, urbana, rural y económicamente activa. Las cifras contenidas en esta publicación constituyen una revisión de las presentadas en el Observatorio 2014. En esta oportunidad, se actualizaron las estimaciones y proyecciones de la población a nivel nacional desde 1950 hasta 2100, considerando las nuevas fuentes de información disponibles para Chile y Guatemala. En las próximas ediciones se irán incorporando las nuevas estimaciones y proyecciones de población, elaboradas con el método de los componentes, pero por edades simples y años calendario. Como es habitual, se incluye un capítulo en el que se analizan las tendencias demográficas. En esta oportunidad, se examinan los avances en el descenso de la fecundidad más allá de lo proyectado a fines de la década de 1980 y su impacto en el crecimiento de la población. En las notas técnicas de este Observatorio se enumeran las fuentes de datos consideradas para cada país.
Resumo:
We estimated demographic parameters and harvest risks for polar bears (Ursus maritimus) inhabiting the Gulf of Boothia, Nunavut, from 1976 to 2000. We computed survival and abundance from capture–recapture and recovery data (630 marks) using a Burnham joint live–dead model implemented in program MARK. Annual mean total survival (including harvest) was 0.889 ± 0.179 ( x ± 1 SE) for cubs, 0.883 ± 0.087 for subadults (ages 1–4), 0.919 ± 0.044 for adult females, and 0.917 ± 0.041 for adult males. Abundance in the last 3 yr of study was 1,592 ± 361 bears. Mean size of newborn litters was 1.648 ± 0.098 cubs. By age 7, 0.97 ± 0.30 of available females were producing litters. Harvest averaged 38.4 ± 4.2 bears/year in the last 5 yr of study; however, the 2002–2007 kill averaged 56.4 bears/yr. We used a harvested Population Viability Analysis (PVA) to examine impacts of increasing rates of harvest. We estimated the current population growth rate, λH, to be 1.025 ± 0.032. Although this suggests the population is growing, progressive environmental changes may require more frequent population inventory studies to maintain the same levels of harvest risk.
Resumo:
According to estimates released by the Bureau of the Census in August, 2009, Nebraska’s total housing stock increased by 5,529 units between July 1, 2007 and July 1, 2008, an increase of 0.7 percent for the year. This represented an estimated rate of growth in housing stock slightly below the state’s estimated rate of population growth, which was 0.8 percent for the same time period.
Resumo:
Stage-structured population models predict transient population dynamics if the population deviates from the stable stage distribution. Ecologists’ interest in transient dynamics is growing because populations regularly deviate from the stable stage distribution, which can lead to transient dynamics that differ significantly from the stable stage dynamics. Because the structure of a population matrix (i.e., the number of life-history stages) can influence the predicted scale of the deviation, we explored the effect of matrix size on predicted transient dynamics and the resulting amplification of population size. First, we experimentally measured the transition rates between the different life-history stages and the adult fecundity and survival of the aphid, Acythosiphon pisum. Second, we used these data to parameterize models with different numbers of stages. Third, we compared model predictions with empirically measured transient population growth following the introduction of a single adult aphid. We find that the models with the largest number of life-history stages predicted the largest transient population growth rates, but in all models there was a considerable discrepancy between predicted and empirically measured transient peaks and a dramatic underestimation of final population sizes. For instance, the mean population size after 20 days was 2394 aphids compared to the highest predicted population size of 531 aphids; the predicted asymptotic growth rate (λmax) was consistent with the experiments. Possible explanations for this discrepancy are discussed. Includes 4 supplemental files.