972 resultados para Affective states
Resumo:
Background The risk factors and co-factors for sporadic childhood BL are unknown. We investigated demographic and age-specific characteristics of childhood BL (0–14 years) in the U.S. Procedure BL age-standardized incidence rates (2000 U.S. standard population), were calculated using data obtained from 12 registries in the NCI’s Surveillance, Epidemiology, and End Results program for cases diagnosed from 1992 through 2005. Incidence rate ratios and 95% confidence intervals (95% CI) were calculated by gender, age-group, race, ethnicity, calendar-year period, and registry. Results Of 296 cases identified, 56% were diagnosed in lymph nodes, 21% in abdominal organs, not including retroperitoneal lymph nodes, 14% were Burkitt cell leukemia, and 9% on face/head structures. The male-to-female case ratio was highest for facial/head tumors (25:1) and lowest for Burkitt cell leukemia (1.6:1). BL incidence rate was 2.5 (95% CI 2.3–2.8) cases per million person-years and was higher among boys than girls (3.9 vs. 1.1, p<0.001) and higher among Whites and Asians/Pacific Islanders than among Blacks (2.8 and 2.9 vs.1.2, respectively, p<0.001). By ethnicity, BL incidence was higher among non-Hispanic Whites than Hispanic Whites (3.2 vs. 2.0, p=0.002). Age-specific incidence rate for BL peaked by age 3–5 years (3.4 cases per million), then stabilized or declined with increasing age, but it did not vary with calendar-year or registry area. Conclusions Our results indicate that early childhood exposures, male-sex, and White race may be risk factors for sporadic childhood BL in the United States. Keywords: epidemiology, pediatric cancer, non-Hodgkin lymphoma, HIV/AIDS
In the pursuit of effective affective computing : the relationship between features and registration
Resumo:
For facial expression recognition systems to be applicable in the real world, they need to be able to detect and track a previously unseen person's face and its facial movements accurately in realistic environments. A highly plausible solution involves performing a "dense" form of alignment, where 60-70 fiducial facial points are tracked with high accuracy. The problem is that, in practice, this type of dense alignment had so far been impossible to achieve in a generic sense, mainly due to poor reliability and robustness. Instead, many expression detection methods have opted for a "coarse" form of face alignment, followed by an application of a biologically inspired appearance descriptor such as the histogram of oriented gradients or Gabor magnitudes. Encouragingly, recent advances to a number of dense alignment algorithms have demonstrated both high reliability and accuracy for unseen subjects [e.g., constrained local models (CLMs)]. This begs the question: Aside from countering against illumination variation, what do these appearance descriptors do that standard pixel representations do not? In this paper, we show that, when close to perfect alignment is obtained, there is no real benefit in employing these different appearance-based representations (under consistent illumination conditions). In fact, when misalignment does occur, we show that these appearance descriptors do work well by encoding robustness to alignment error. For this work, we compared two popular methods for dense alignment-subject-dependent active appearance models versus subject-independent CLMs-on the task of action-unit detection. These comparisons were conducted through a battery of experiments across various publicly available data sets (i.e., CK+, Pain, M3, and GEMEP-FERA). We also report our performance in the recent 2011 Facial Expression Recognition and Analysis Challenge for the subject-independent task.
Resumo:
Extreme cold and heat waves, characterised by a number of cold or hot days in succession, place a strain on people’s cardiovascular and respiratory systems. The increase in deaths due to these waves may be greater than that predicted by extreme temperatures alone. We examined cold and heat waves in 99 US cities for 14 years (1987–2000) and investigated how the risk of death depended on the temperature threshold used to define a wave, and a wave’s timing, duration and intensity. We defined cold and heat waves using temperatures above and below cold and heat thresholds for two or more days. We tried five cold thresholds using the first to fifth percentiles of temperature, and five heat thresholds using the ninety-fifth to ninety-ninth percentiles. The extra wave effects were estimated using a two-stage model to ensure that their effects were estimated after removing the general effects of temperature. The increases in deaths associated with cold waves were generally small and not statistically significant, and there was even evidence of a decreased risk during the coldest waves. Heat waves generally increased the risk of death, particularly for the hottest heat threshold. Cold waves of a colder intensity or longer duration were not more dangerous. Cold waves earlier in the cool season were more dangerous, as were heat waves earlier in the warm season. In general there was no increased risk of death during cold waves above the known increased risk associated with cold temperatures. Cold or heat waves earlier in the cool or warm season may be more dangerous because of a build up in the susceptible pool or a lack of preparedness for cold or hot temperatures.
Resumo:
The railway industry has been slow to adopt limit states principles in the structural design of concrete sleepers for its tracks, despite the global take up of this form of design for almost every other type of structural element. Concrete sleeper design is still based on limiting stresses but is widely perceived by track engineers to lead to untapped reserves of strength in the sleepers. Limit design is a more rational philosophy, especially where it is based on the ultimate dynamic capacity of the concrete sleepers. The paper describes the development of equations and factors for a limit design methodology for concrete sleepers in flexure using a probabilistic evaluation of sleeper loading. The new method will also permit a cogent, defensible means of establishing the true capacity of the billions of concrete sleepers that are currently in-track around the world, leading to better utilisation of track infrastructure. The paper demonstrates how significant cost savings may be achieved by track owners.
Resumo:
Recently updated information has raised a concern over not only the existing cost-ineffective design method but also the unrealistic analysis mode of railroad prestressed concrete sleepers. Because of the deficient knowledge in the past, railway civil engineers have been mostly aware of the over-conservative design methods for structural components in any railway track, which rely on allowable stresses and material strength reductions. Based on a number of proven experiments and field data, it is believed that the concrete sleepers which complied with the allowable stress concept possess unduly untapped fracture toughness. A collaborative research project run by the Australian Cooperative Research Centre for Railway Engineering and Technologies (RailCRC) was initiated to ascertain the reserved capacity of Australian railway prestressed concrete sleepers designed using the existing design code. The findings have led to the development of a new limit states design concept. This briefing highlights the conventional and the new limit states design philosophies and their implication to both the railway and the public community.
Resumo:
Although there has been exponential growth in the number of studies of destination image appearing in the tourism literature, few have addressed the role of affective perceptions. This paper analyses the market positions held by a competitive set of destinations, through a comparison of cognitive, affective and conative perceptions. Cognitive perceptions were measured by trialling a factor analytic adaptation of importance-performance analysis. Affective perceptions were measured using an affective response grid. The alignment of the results from these techniques identified leadership positions held by two quite different destinations on two quite different dimensions of short break destination attractiveness.
Resumo:
The current study explored the effect of depression, optimism, and anxiety on job-related affective well-being in 70 graduate nurses. It was predicted that depression and anxiety would have a significant negative effect on job-related affective well-being, whereas optimism would have a significant positive effect on job-related affective well-being. Questionnaires were completed online or in hard-copy forms. Results revealed that depression, optimism, and anxiety were all significantly correlated to job-related affective well-being in the expected direction however, depression was found to be the only variable that made a significant unique contribution to the prediction of job-related affective well-being. Possible explanations for these findings are explored.
Resumo:
Background Individual exposure to ultraviolet radiation (UVR) is challenging to measure, particularly for diseases with substantial latency periods between first exposure and diagnosis of outcome, such as cancer. To guide the choice of surrogates for long-term UVR exposure in epidemiologic studies, we assessed how well stable sun-related individual characteristics and environmental/meteorological factors predicted daily personal UVR exposure measurements. Methods We evaluated 123 United States Radiologic Technologists subjects who wore personal UVR dosimeters for 8 hours daily for up to 7 days (N = 837 days). Potential predictors of personal UVR derived from a self-administered questionnaire, and public databases that provided daily estimates of ambient UVR and weather conditions. Factors potentially related to personal UVR exposure were tested individually and in a model including all significant variables. Results The strongest predictors of daily personal UVR exposure in the full model were ambient UVR, latitude, daily rainfall, and skin reaction to prolonged sunlight (R2 = 0.30). In a model containing only environmental and meteorological variables, ambient UVR, latitude, and daily rainfall were the strongest predictors of daily personal UVR exposure (R2 = 0.25). Conclusions In the absence of feasible measures of individual longitudinal sun exposure history, stable personal characteristics, ambient UVR, and weather parameters may help estimate long-term personal UVR exposure.
Resumo:
Density functional theory (DFT) calculations have been carried out to explore the catalytic activation of C–H bonds in methane by the iron atom, Fe, and the iron dimer, Fe2. For methane activation on an Fe atom, the calculations suggest that the activation of the first C–H bond is mediated via the triplet excited-state potential energy surface (PES), with initial excitation of Fe to the triplet state being necessary for the reaction to be energetically feasible. Compared with the breaking of the first C–H bond, the cleavage of the second C–H bond is predicted to involve a significantly higher barrier, which could explain experimental observations of the HFeCH3 complex rather than CH2FeH2 in the activation of methane by an Fe atom. For methane activation on an iron dimer, the cleavage of the first C–H bond is quite facile with a barrier only 11.2, 15.8 and 8.4 kcal/mol on the septet state energy surface at the B3LYP/6-311+G(2df,2dp), BPW91/6-311+G(2df,2dp) and M06/B3LYP level, respectively. Cleavage of the second C–H bond from HFe2CH3 involves a barrier calculated respectively as 18.0, 10.7 and 12.4 kcal/mol at the three levels. The results suggest that the elimination of hydrogen from the dihydrogen complex is a rate-determining step. Overall, our results indicate that the iron dimer Fe2 has a stronger catalytic effect on the activation of methane than the iron atom.
Resumo:
In this letter the core-core-valence Auger transitions of an atomic impurity, both in bulk or adsorbed on a jellium-like surface, are computed within a DFT framework. The Auger rates calculated by the Fermi golden rule are compared with those determined by an approximate and simpler expression. This is based on the local density of states (LDOS) with a core hole present, in a region around the impurity nucleus. Different atoms, Na and Mg, solids, Al and Ag, and several impurity locations are considered. We obtain an excellent agreement between KL1V and KL23V rates worked out with the two approaches. The radius of the sphere in which we calculate the LDOS is the relevant parameter of the simpler approach. Its value only depends on the atomic species regardless of the location of the impurity and the type of substrate. (C) 2003 Elsevier B.V. All rights reserved.