889 resultados para Aeronautics in wildfire control.
Resumo:
We investigated the effects of estrogen on sodium intake and excretion induced by angiotensin II (ANG II), atrial natriuretic peptide (ANP) or ANG II plus ANP injected into the median preoptic nucleus (MnPO). Female Holtzman rats weighing 250-300 g were used. Sodium ingestion and excretion 120 min after the injection of 0.5 mu l of 0.15 M NaCl into the MnPO were 0.3 +/- 0.1 ml (N = 12) and 29 +/- 7 mu Eq in intact rats, 0.5 +/- 0.2 ml (N = 10) and 27 +/- 6 mu Eq in ovariectomized rats, and 0.2 +/- 0.08 (N = 11) and 38 +/- 8 mu Eq in estrogen-treated ovariectomized (50 mu g/day for 21 days) rats, respectively. ANG II (21 mu M) injection in intact, ovariectomized, and estrogen-treated ovariectomized rats increased sodium intake (3.8 +/- 0.4, 1.8 +/- 0.3 and 1.2 +/- 0.2 ml/120 min, respectively) (N = 11) and increased sodium excretion (166 +/- 18, 82 +/- 22 and 86 +/- 12 mu Eq/120 min, respectively) (N = 11). ANP (65 mu M) injection in intact (N = 11), ovariectomized(N = 10)and estrogen-treated ovariectomized (N = 10) rats increased sodium intake (1.4 +/- 0.2, 1.8 +/- 0.3, and 1.7 +/- 0.3 ml/120 min, respectively) and sodium excretion (178 +/- 19, 187 +/- 9, and 232 +/- 29 mu Eq/120 min, respectively). Concomitant injection of ANG II and ANP into the MnPO of intact (N = 12), ovariectomized (N = 10) and estrogentreated ovariectomized (N = 10) rats caused smaller effects than those produced by each peptide given alone: 1.3 +/- 0.2, 0.9 +/- 0.2 and 0.3 +/- 0.1 ml/120 min for sodium intake, respectively, and 86 +/- 9, 58 +/- 7, and 22 +/- 4 mu Eq/120 min for sodium excretion, respectively. Taken together, these results demonstrate that there is an antagonistic interaction of ANP and ANG II on sodium intake and excretion, and that reproductive hormones affect this interaction.
Resumo:
Short-term cold exposure of homeothermic animals leads to higher thermogenesis and food consumption accompanied by weight loss. An analysis of cDNA-macroarray was employed to identify candidate mRNA species that encode proteins involved in thermogenic adaptation to cold. A cDNA-macroarray analysis, confirmed by RT-PCR, immunoblot, and RIA, revealed that the hypothalamic expression of melanin-concentrating hormone (MCH) is enhanced by exposure of rats to cold environment. The blockade of hypothalamic MCH expression by antisense MCH oligonucleotide in cold-exposed rats promoted no changes in feeding behavior and body temperature. However, MCH blockade led to a significant drop in body weight, which was accompanied by decreased liver glycogen, increased relative body fat, increased absolute and relative interscapular brown adipose tissue mass, increased uncoupling protein 1 expression in brown adipose tissue, and increased consumption of lean body mass. Thus, increased hypothalamic MCH expression in rats exposed to cold may participate in the process that allows for efficient use of energy for heat production during thermogenic adaptation to cold.
Resumo:
One-day-old broiler chicks received cecal microflora (CM) cultured under aerobic, anaerobic conditions, or both (mixed) and were then infected with Salmonella Enteritidis, in order to compare the efficacy of these different types of culture in terms of the number of chicks infected, cecal colonization and faecal excretion of the challenging bacteria. Regardless of culture type, CM always led to a smaller number of S. Enteritidis for any of the parameters studied compared to untreated chicks. Aerobic CM demonstrated better efficacy in reducing the number of infected chicks and cecal colonization by S. Enteritidis, followed by mixed CM. No difference was observed in faecal excretion of S. Enteritidis between the chicks that received different types of CM culture. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
This study investigated the roles of serotonin (5-HT) receptors in the lateral parabrachial nucleus (LPBN), and brain angiotensin type 1 (AT(1)) receptors in the intake of 0.3 M NaCl and water induced by angiotensin II (ANG II). Rats were implanted with stainless steel cannulas for injections into tho subfornical organ (SFO) and into the LPBN. Bilateral LPBN pretreatment with the nonselective serotonergic 5-HT1/5-HT2 receptor antagonist methysergide (4 mu g/200 nl) markedly enhanced 0.3 M NaCl intake induced by injections of ANG II (20 ng/200 nl) into the SFO. Pretreatment of the SFO with the AT(1) receptor antagonist losartan (1 mu g/200 nl) blocked the intake of 0.3 M NaCl induced by ANG II in combination with LPBN methysergide injections. These results suggest that serotonergic mechanisms associated with the LPBN inhibit the expression of salt appetite induced by ANG II injections into Ihs SFO. In addition, the results indicate that the enhanced NaCl intake generated by central administration of ANG II in the presence of LPBN 5-HT blockade is mediated bg brain ATI receptors.
Resumo:
Water intake was studied in albino rats with lesions in the lateral preoptic area, in the subfornical organ, and in both the lateral preoptic area and the subfornical organ. Drinking was induced by cellular dehydration, hypovolemia, hypotension (isoproterenol or caval ligation), and water deprivation. The animals with lesions in both areas showed a significant reduction in their water intake in response to cellular dehydration. Drinking due to extracellular dehydration was reduced in the animals that received only subfornical organ lesions, and was reduced even further in the animals with both areas ablated. The lesions in the subfornical organ were sufficient to reduce the thirst induced by caval ligation. The lesions in both areas inhibit water intake induced by caval ligation. Water intake induced by deprivation was reduced when both areas were destroyed. These findings demonstrate that both the lateral preoptic area and the subfornical organ are necessary for normal drinking in response to cellular dehydration, hypovolemia, and hypotension. There is further evidence that the lateral preoptic area and subfornical organ interact in the control of water intake induced by a variety of thirst challenges.
Resumo:
1. Water intake induced by injection of 0.2 M-NaCl into the lateral preoptic area was increased by the injection of angiotensin II into the subfornical organ of rats. The injection of hypertonic saline solution into the subfornical organ increased water intake. However, the increase was lower than when the solution was injected into the lateral preoptic area. The injection of 4 μg angiotensin II into the lateral preoptic area further augmented this effect. 2. Injection of angiotensin II into the subfornical organ caused a rise in blood pressure which preceded the thirst-inducing effect. The injection of 0.2 M NaCl into the subfornical organ caused no changes in blood pressure, whereas the injection of angiotensin II into the lateral preoptic area caused some increase. 3. Dehydration of the lateral preoptic area by means of 0.2 M NaCl in combination with intravenous infusion of angiotensin II caused a summation of effects in terms of the water intake, without changing cardiovascular alterations induced by the infusion of angiotensin II. A summation of effects in the water intake, but not in blood pressure, was also observed when 0.5 M NaCl was infused intravenously in combination with the injection of angiotensin II into the subfornical organ and into the lateral preoptic area. 4. The results indicate that there are interactions between the subfornical organ and lateral preoptic area in the regulation of cardiovascular and thirst mechanisms.
Resumo:
Noradrenaline (NOR) is a neurotransmitter presenl in the central nervous system which is related to the control of ingestive behavior of food and fluids. We describe here the relationship between NOR and intake of water and NaCl solution, fluids that are essential for a normal body fluid electrolytic balance. Central NOR has an inhibitory effect on fluid intake, but it either induces or not alterations in food intake. Several ways of inducing water intake, such as water deprivation, meal-associated water intake, administration of angiotensinergic, cholinergic or beta-adrenergic agonists, or administration of hyperosmotic solutions, are inhibited by alpha-adrenergic agonists. Need-induced sodium intake by sodium-depleted animals is also inhibited by alpha-adrenergic agonists. NOR can also facilitate fluid intake. Water intake is elicited by NOR and the integrity of central noradrenergic systems is necessary for a normal expression of water or salt intake in dehydrated animals. The angiotensinergic component of either behavior apparently depends on a central noradrenergic system. NOR probably facililates fluid intake by acting on postsynaptic receptors, but we do not know how it inhibits fluid infake. The inhibitory and facilitatory effects of NOR on ingestive behavior suggest a dual role for this neurotransmitter in the control of hydromineral fluid intake.
Resumo:
A total of 99 pregnant cows were divided into eight groups submitted to the following treatments: group I (n = 29) consisted of unvaccinated cows whose calves did not receive a probiotic and was used as control. Group II (n = 10) consisted of vaccinated cows whose calves did not receive a probiotic. Groups III, IV and V (n = 10 neach) consisted of vaccinated cows whose calves received a probiotic for 5, 15 and 30 days, respectively. Groups VI, VII and VIII (n = 10 each) consisted of unvaccinated cows whose calves received a probiotic for 5, 15 and 30 days, respectively. Each animal in the vaccinated groups received two 5.0 ml vaccine doses containing pili K99 and A14 of Escherichia coli by the subcutaneous route. The probiotic containing Lactobacillus acidophilus at the dose of 2.0 x 10(8) live cells in 250 ml milk, was administered orally. All animals were observed clinically and bacteriologically and anti-K99 and anti-A14 antibody titers were determined in serum and colostrum. Mean calf weight was measured at birth and at 30 days of age. The results showed that a combination of the vaccine with the probiotic administered for 15 and 30 days was the most efficient treatment for the control of diarrhea.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Networked control systems (NCS) are distributed control system in which sensors, actuators and controllers are physically separated and connected through communication networks. NCS represent the evolution of networked control architectures providing greater modularity and control decentralization, ease maintenance and diagnosis and lower cost of implementation. A recent trend in this research topic is the development of NCS using wireless networks which enable interoperability between existing wired and wireless systems. This paper presents the feasibility analysis of using a serial RS-232 to Bluetooth converter as a wireless sensor link in NCS. In order to support this investigation, relevant performance metrics for wireless control applications such as jitter, time delay and messages lost are highlighted and calculated to evaluate the converter capabilities. In addition the control performance of an implemented motor control system using the converter is analyzed. Experimental results led to the conclusion that serial RS-232 Bluetooth converters can be used to implement wireless networked control systems (WNCS) providing transmission rates and closed control loop times which are acceptable for NCS applications. © 2011 IEEE.
Resumo:
The nucleus of the solitary tract (NTS) is the primary site of visceral afferents to the central nervous system. In the present study, we investigated the effects of lesions in the commissural portion of the NTS (commNTS) on the activity of vasopressinergic neurons in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei, plasma vasopressin, arterial pressure, water intake, and sodium excretion in rats with plasma hyperosmolality produced by intragastric 2 M NaCl (2 ml/rat). Male Holtzman rats with 15-20 days of sham or electrolytic lesion (1 mA; 10 s) of the commNTS were used. CommNTS lesions enhanced a 2 M NaCl intragastrically induced increase in the number of vasopressinergic neurons expressing c-Fos in the PVN (28 ± 1, vs. sham: 22 ± 2 c-Fos/AVP cells) and SON (26 ± 4, vs. sham: 11 ± 1 c-Fos/AVP cells), plasma vasopressin levels (21 ± 8, vs. sham: 6.6 ± 1.3 pg/ml), pressor responses (25 ± 7 mmHg, vs. sham: 7 ± 2 mmHg), water intake (17.5 ± 0.8, vs. sham: 11.2 ± 1.8 ml/2 h), and natriuresis (4.9 ± 0.8, vs. sham: 1.4 ± 0.3 meq/1 h). The pretreatment with vasopressin antagonist abolished the pressor response to intragastric 2 M NaCl in commNTS-lesioned rats (8 ± 2.4 mmHg at 10 min), suggesting that this response is dependent on vasopressin secretion. The results suggest that inhibitory mechanisms dependent on commNTS act to limit or counterbalance behavioral, hormonal, cardiovascular, and renal responses to an acute increase in plasma osmolality. © 2013 the American Physiological Society.
Resumo:
The aim of this study was to analyze the effect of muscle fatigue in active and inactive young adults on the kinematic and kinetic parameters of normal gait and obstacle crossing. Twenty male subjects were divided into active (10) and inactive (10), based on self-reported physical activity. Participants performed three trials of two tasks (normal gait and obstacle crossing) before and after a fatigue protocol, consisting of repeated sit-to-stand transfers until the instructed pace could no longer be maintained. MANOVAs were used to compare dependent variables with the following factors: physical activity level, fatigue and task. The endurance time in the fatigue protocol was lower for the inactive group. Changes of gait parameters with fatigue, among which increased step width and increased stride speed were the most consistent, were independent of task and physical activity level. These findings indicate that the kinematic and kinetic parameters of gait are affected by muscle fatigue irrespective of the physical activity level of the subjects and type of gait. Inactive individuals used a slightly different strategy than active individuals when crossing an obstacle, independently of muscle fatigue. © 2013.
Resumo:
Teaching the first instances of arbitrary matching-to-sample to nonhumans can prove difficult and time consuming. Stimulus control relations may develop that differ from those intended by the experimentereven when stimulus control shaping procedures are used. We present, in this study, efforts to identify sources of shaping program failure with a capuchin monkey. Procedures began with a baseline of identity matching. During subsequent shaping trials, compound comparison stimuli had two componentsone identical to and another different from the sample. The identical component was eliminated gradually by removing portions across trials (i.e., subtracting stimulus elements). The monkey performed accurately throughout shaping. At a late stage in the program, probe tests were conducted: (1) arbitrary matching trials that had all elements of the identical comparison removed and (2) other trials that included residual elements. During the test, the monkey performed at low levels on the former trials and higher levels on the latter. These results suggested that higher accuracy was due merely to continued control by the residual elements: the target arbitrary matching relations had not been learned. Thus, it appears that procedures that gradually transform identity matching baselines into arbitrary matching can fail by inadvertently shaping restricted control by residual elements. Subsequent probes at the end of the shaping series showed a successful transfer of stimulus control from identity to arbitrary matching after further programming steps apparently overcame the restricted stimulus control.