957 resultados para Aedes aegypti - Controle


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Saliva is a key element of interaction between hematophagous mosquitoes and their vertebrate hosts. In addition to allowing a successful blood meal by neutralizing or delaying hemostatic responses, the salivary cocktail is also able to modulate the effector mechanisms of host immune responses facilitating, in turn, the transmission of several types of microorganisms. Understanding how the mosquito uses its salivary components to circumvent host immunity might help to clarify the mechanisms of transmission of such pathogens and disease establishment. METHODS: Flow cytometry was used to evaluate if increasing concentrations of A. aegypti salivary gland extract (SGE) affects bone marrow-derived DC differentiation and maturation. Lymphocyte proliferation in the presence of SGE was estimated by a colorimetric assay. Western blot and Annexin V staining assays were used to assess apoptosis in these cells. Naïve and memory cells from mosquito-bite exposed mice or OVA-immunized mice and their respective controls were analyzed by flow cytometry. RESULTS: Concentration-response curves were employed to evaluate A. aegypti SGE effects on DC and lymphocyte biology. DCs differentiation from bone marrow precursors, their maturation and function were not directly affected by A. aegypti SGE (concentrations ranging from 2.5 to 40 μg/mL). On the other hand, lymphocytes were very sensitive to the salivary components and died in the presence of A. aegypti SGE, even at concentrations as low as 0.1 μg/mL. In addition, A. aegypti SGE was shown to induce apoptosis in all lymphocyte populations evaluated (CD4+ and CD8+ T cells, and B cells) through a mechanism involving caspase-3 and caspase-8, but not Bim. By using different approaches to generate memory cells, we were able to verify that these cells are resistant to SGE effects. CONCLUSION: Our results show that lymphocytes, and not DCs, are the primary target of A. aegypti salivary components. In the presence of A. aegypti SGE, naïve lymphocyte populations die by apoptosis in a caspase-3- and caspase-8-dependent pathway, while memory cells are selectively more resistant to its effects. The present work contributes to elucidate the activities of A. aegypti salivary molecules on the antigen presenting cell-lymphocyte axis and in the biology of these cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent outbreaks of dengue fever (DF) along the United States/Mexico border, coupled with the high number of reported cases in Mexico suggest that there is the possibility for DF emergence in Houston, Texas1,2. To determine the presence of DF, populations of Aedes aegypti and Aedes albopictus were identified and tested for dengue virus. Maps were created to identify "hot spots" (Figure 1) based on historical data on Ae. aegypti and Ae. albopictus, demographic information, and locations of human cases of dengue fever. BG Sentinel Traps®, in conjunction with BG Lure® attractant, octanol and dry ice, were used to collect mosquitoes, which were then tested for presence of dengue virus using ELISA techniques. All samples tested were negative for dengue virus (DV). Survival of DV ultimately comes down to whether or not it will be vectored by a mosquito to a susceptible human host. The presence of infected humans and contact with the mosquito vectors are two critical factors necessary in the establishment of DF. Historical records indicate the presence of Ae. aegypti and Ae. albopictus in Harris County, which would support localized dengue transmission if infected individuals are present.^ (1) Brunkard JM, Robles-Lopez JL, Ramirez J, Cifuentes E, Rothenberg SJ, Hunsperger EA, Moore CG, Brussolo RM, Villarreal NA, Haddad BM, 2007. Dengue fever seroprevalence and risk factors, Texas-Mexico border, 2004. Emerg Infect Dis 13: 1477-1483. (2) Ramos MM, Mohammed H, Zielinski-Gutierrez E, Hayden MH, Lopez JL, Fournier M, Trujillo AR, Burton R, Brunkard JM, Anaya-Lopez L, Banicki AA, Morales PK, Smith B, Munoz JL, Waterman SH, 2008. Epidemic dengue and dengue hemorrhagic fever at the Texas-Mexico Border: results of a household-based seroepidemiologic survey, December 2005. Am J Trop Med Hyg 78: 364-369.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three novel families of transposable elements, Wukong, Wujin, and Wuneng, are described in the yellow fever mosquito, Aedes aegypti. Their copy numbers range from 2,100 to 3,000 per haploid genome. There are high degrees of sequence similarity within each family, and many structural but not sequence similarities between families. The common structural characteristics include small size, no coding potential, terminal inverted repeats, potential to form a stable secondary structure, A+T richness, and putative 2- to 4-bp A+T-biased specific target sites. Evidence of previous mobility is presented for the Wukong elements. Elements of these three families are associated with 7 of 16 fully or partially sequenced Ae. aegypti genes. Characteristics of these mosquito elements indicate strong similarities to the miniature inverted-repeat transposable elements (MITEs) recently found to be associated with plant genes. MITE-like elements have also been reported in two species of Xenopus and in Homo sapiens. This characterization of multiple families of highly repetitive MITE-like elements in an invertebrate extends the range of these elements in eukaryotic genomes. A hypothesis is presented relating genome size and organization to the presence of highly reiterated MITE families. The association of MITE-like elements with Ae. aegypti genes shows the same bias toward noncoding regions as in plants. This association has potentially important implications for the evolution of gene regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rapid and reproducible method of inhibiting the expression of specific genes in mosquitoes should further our understanding of gene function and may lead to the identification of mosquito genes that determine vector competence or are involved in pathogen transmission. We hypothesized that the virus expression system based on the mosquito-borne Alphavirus, Sindbis (Togaviridae), may efficiently transcribe effector RNAs that inhibit expression of a targeted mosquito gene. To test this hypothesis, germ-line-transformed Aedes aegypti that express luciferase (LUC) from the mosquito Apyrase promoter were intrathoracically inoculated with a double subgenomic Sindbis (dsSIN) virus TE/3′2J/anti-luc (Anti-luc) that transcribes RNA complementary to the 5′ end of the LUC mRNA. LUC activity was monitored in mosquitoes infected with either Anti-luc or control dsSIN viruses expressing unrelated antisense RNAs. Mosquitoes infected with Anti-luc virus exhibited 90% reduction in LUC compared with uninfected and control dsSIN-infected mosquitoes at 5 and 9 days postinoculation. We demonstrate that a gene expressed from the mosquito genome can be inhibited by using an antisense strategy. The dsSIN antisense RNA expression system is an important tool for studying gene function in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic modification of the vectorial capacity of mosquito vectors of human disease requires promoters capable of driving gene expression with appropriate tissue and stage specificity. We report on the characterization in transgenic Aedes aegypti of two mosquito gut-specific promoters. A 1.4-kb DNA fragment adjacent to the 5′ end of the coding region of the Ae. aegypti carboxypeptidase (AeCP) gene and a corresponding 3.4-kb DNA fragment at the 5′ end of the Anopheles gambiae carboxypeptidase (AgCP) gene were linked to a firefly luciferase reporter gene and introduced into the Ae. aegypti germ line by using Hermes and mariner (Mos1) transposons. Six independent transgenic lines were obtained with the AeCP construct and one with the AgCP construct. Luciferase mRNA and protein were abundantly expressed in the guts of transgenic mosquitoes in four of the six AeCP lines and in the AgCP line. Expression of the reporter gene was gut-specific and reached peak levels at about 24 h post-blood ingestion. The AeCP and AgCP promoters can be used to drive the expression of genes that hinder parasite development in the mosquito gut.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Juvenile hormone (JH) is the central hormonal regulator of life-history trade-offs in many insects. In Aedes aegypti, JH regulates reproductive development after emergence. Little is known about JH's physiological functions after reproductive development is complete or JH's role in mediating life-history trade-offs. By examining the effect of hormones, nutrition, and mating on ovarian physiology during the previtellogenic resting stage, critical roles were determined for these factors in mediating life-history trade-offs and reproductive output. The extent of follicular resorption during the previtellogenic resting stage is dependent on nutritional quality. Feeding females a low quality diet during the resting stage causes the rate of follicular resorption to increase and reproductive output to decrease. Conversely, feeding females a high quality diet causes resorption to remain low. The extent of resorption can be increased by separating the ovaries from a source of JH or decreased by exogenous application of methoprene. Active caspases were localized to resorbing follicles indicating that an apoptosis-like mechanism participates in follicular resorption. Accumulations of neutral lipids and the accumulation of mRNA's integral to endocytosis and oocyte development such as the vitellogenin receptor (AaVgR), lipophorin receptor (AaLpRov), heavy-chain clathrin (AaCHC), and ribosomal protein L32 (rpL32) were also examined under various nutritional and hormonal conditions. The abundance of mRNA's and neutral lipid content increased within the previtellogenic ovary as mosquitoes were offered increasing sucrose concentrations or were treated with methoprene. These same nutritional and hormonal manipulations altered the extent of resorption after a blood meal indicating that the fate of follicles and overall fecundity depends, in part, on nutritional and hormonal status during the previtellogenic resting stage. Mating female mosquitoes also altered follicle quality and resorption similarly to nutrition or hormonal application and demonstrates that male accessory gland substances such as JH III passed to the female during copulation have a strong effect on ovarian physiology during the previtellogenic resting stage and can influence reproductive output. Taken together these results demonstrate that the previtellogenic resting stage is not an inactive period but is instead a period marked by extensive life-history and fitness trade-offs in response to nutrition, hormones and mating stimuli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The eggs of the dengue fever vector Aedes aegypti possess the ability to undergo an extended quiescence period hosting a fully developed first instar larvae within its chorion. As a result of this life history stage, pharate larvae can withstand months of dormancy inside the egg where they depend on stored reserves of maternal origin. This adaptation known as pharate first instar quiescence, allows A. aegypti to cope with fluctuations in water availability. An examination of this fundamental adaptation has shown that there are trade-offs associated with it. ^ Aedes aegypti mosquitoes are frequently associated with urban habitats that may contain metal pollution. My research has demonstrated that the duration of this quiescence and the extent of nutritional depletion associated with it affects the physiology and survival of larvae that hatch in a suboptimal habitat; nutrient reserves decrease during pharate first instar quiescence and alter subsequent larval and adult fitness. The duration of quiescence compromises metal tolerance physiology and is coupled to a decrease in metallothionein mRNA levels. My findings also indicate that even low levels of environmentally relevant larval metal stress alter the parameters that determine vector capacity. ^ My research has also demonstrated that extended pharate first instar quiescence can elicit a plastic response resulting in an adult phenotype distinct from adults reared from short quiescence eggs. Extended pharate first instar quiescence affects the performance and reproductive fitness of the adult female mosquito as well as the nutritional status of its progeny via maternal effects in an adaptive manner, i.e., anticipatory phenotypic plasticity results as a consequence of the duration of pharate first instar quiescence and alternative phenotypes may exist for this mosquito with quiescence serving as a cue possibly signaling the environmental conditions that follow a dry period. M findings may explain, in part, A. aegypti's success as a vector and its geographic distribution and have implications for its vector capacity and control.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Juvenile hormone (JH) is crucial for the stimulation and progression of oogenesis from emergence to the previtellogenic resting stage in female Aedes aegypti mosquitoes. Juvenile hormone has been suggested to be among the many substances transferred form the male accessory glands to the female during copulation but no evidence for this has previously been provided. Quantification of JH III in the accessory glands of males and in the bursae copulatrix and spermathecae of mated females was performed using HPLC-FD. These amounts were measured in relation to the quality of adult sugar feeding in the male. The effect of this variable transfer was measured on two fecundity markers that occur during the previtellogenic stage of oogenesis, specifically follicular resorption and ovarian lipids. Male mosquitoes provided with 20% sucrose contained ~ 60% greater amount of JH in the accessory glands and transferred 4 fmol more JH during copulation than males provided with 3% sucrose. These differences resulted in a nearly 40% reduction in follicular resorption and an approximate 3-fold increase in lipid content in the ovaries of mated females during the previtellogenic stage. These results suggest that the contribution of JH from the male is dependent on the quality of nutrition obtained during adult sugar feeding. Female fecundity is likely responsive to these variable previtellogenic effects, possibly resulting in a difference in the number of eggs laid. Improvements in female reproductive output may have wider implications in the transmission of diseases attributed to this important arbovirus vector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semiconductor nanocrystals, also known as quantum dots (QDs), have been used in studies involving mice and human tissues, but never before in research on insects. We used QDs to study the distribution of two neuropeptides in the Aedes aegypti mosquito, the vector of both dengue and yellow fever. These neuropeptides play a significant role in the production of juvenile hormone, a hormone that controls biting behavior, metamorphosis, and reproduction throughout the life of the mosquito. The two neuropeptides allatostatin-C (AS-C) and allatotropin (AT) function as inhibitory (AS-C) and stimulatory (AT) regulators of juvenile hormone synthesis in the corpus allatum gland. In other insects, they also affect heart rate, gut movement, and nutrient uptake. Conjugating these neuropeptides to quantum dots via a streptavidinlbiotin link, we were able to expose the mosquito corpus allatum and abdomen to allatostatin-C and allatotropin and then to visualize their distribution under UV light using confocal and compound light microscopy. Histological sections of the whole mosquito, incubations of tissues with conjugates (in vitro), and microinjections of conjugates into the mosquito (in vivo) were performed. The results showed that quantum dots can be used to detect neuropeptide distribution in the mosquito. The more we understand about these neuropeptides and juvenile hormone, the more we can contribute to stopping the spread of infectious diseases, such as dengue and yellow fever.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The juvenile hormones (JHs) are sesquiterpenoid compounds that play a central role in insect reproduction, development and behavior. They are synthesized and secreted by a pair of small endocrine glands, the corpora allata (CA), which are intimately connected to the brain. The enzymes involved in the biosynthesis of JH are attractive targets for the control of mosquito populations. This dissertation is a comprehensive functional study of five Aedes aegypti CA enzymes, HMG-CoA synthase (AaHMGS), mevalonate kinase (AaMK), phosphomevalonate kinase (AaPMK), farnesyl diphosphate synthase (AaFPPS) and farnesyl pyrophosphate phosphatase (AaFPPase). The enzyme AaHMGS catalyzes the condensation of acetoacetyl-CoA and acetyl-CoA to produce HMG-CoA. The enzyme does not require any co-factor, although its activity is enhanced by addition of Mg2+. The enzyme AaMK is a class I mevalonate kinase that catalyzes the ATP-dependent phosphorylation of mevalonic acid to form mevalonate 5-phosphate. Activity of AaMK is inhibited by isoprenoids. The enzyme AaPMK catalyzes the cation-dependent reversible reaction of phosphomevalonate and ATP to form diphosphate mevalonate and ADP. The enzyme AaFPPS catalyzes the condensation of isopentenyl diphosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) to form geranyl diphosphate (GPP) and farnesyl pyrophosphate (FPP). The enzyme AaFPPS shows an unusual product regulation mechanism, with chain length final product of 10 or 15 C depending on the metal cofactor present. The enzymes AaFPPase-1 and AaFPPase-2 efficiently hydrolyze FPP into farnesol, although RNAi experiments demonstrate that only AaFPPase-1 is involved in the catalysis of FPP into FOL in the CA of A. aegypti. This dissertation also explored the inhibition of the activity of some of the JH biosynthesis enzymes as tools for insect control. We described the effect of N-acetyl-S-geranylgeranyl-L-cysteine as a potent inhibitor of AaFPPase 1 and AaFPPase-2. In addition, inhibitors of AaMK and AaHMGS were also investigated using purified recombinant proteins. The present study provides an important contribution to the characterization of recombinant proteins, the analysis of enzyme kinetics and inhibition constants, as well as the understanding of the importance of these five enzymes in the control of JH biosynthesis rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Según la Organización Mundial de la Salud (OMS, 2000) la fiebre por dengue y la fiebre hemorrágica 1 por dengue son un problema de salud pública a las cuales dos quintas partes de la población mundial se encuentran en riesgo. Las principales medidas de prevención y control han sido la fumigación masiva de insecticidas dirigida contra los mosquitos adultos (adulticidas) y la aplicación de larvicidas (control químico). Sin embargo, a pesar de que dichas medidas reducen rápidamente la población de mosquitos adultos y eliminan un 90% de la población de larvas en un criadero, su efecto es sólo transitorio pues no afectan la generación de nuevos mosquitos. En efecto, los registros estadísticos demuestran un avance del mosquito a pesar de las campañas de fumigación y aplicación de larvicidas (OMS, 2000). Por otra parte Hernández y García (2000) señalan que hay factores negativos asociados con el control químico de las poblaciones de mosquitos.