929 resultados para Adsorption. Zeolite 13X. Langmuir model. Dynamic modeling. Pyrolysis of sewage sludge
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
The world's largest fossil oyster reef, formed by the giant oyster Crassostrea gryphoides and located in Stetten (north of Vienna, Austria) is studied by Harzhauser et al., 2015, 2016; Djuricic et al., 2016. Digital documentation of the unique geological site is provided by terrestrial laser scanning (TLS) at the millimeter scale. Obtaining meaningful results is not merely a matter of data acquisition with a suitable device; it requires proper planning, data management, and postprocessing. Terrestrial laser scanning technology has a high potential for providing precise 3D mapping that serves as the basis for automatic object detection in different scenarios; however, it faces challenges in the presence of large amounts of data and the irregular geometry of an oyster reef. We provide a detailed description of the techniques and strategy used for data collection and processing in Djuricic et al., 2016. The use of laser scanning provided the ability to measure surface points of 46,840 (estimated) shells. They are up to 60-cm-long oyster specimens, and their surfaces are modeled with a high accuracy of 1 mm. In addition to laser scanning measurements, more than 300 photographs were captured, and an orthophoto mosaic was generated with a ground sampling distance (GSD) of 0.5 mm. This high-resolution 3D information and the photographic texture serve as the basis for ongoing and future geological and paleontological analyses. Moreover, they provide unprecedented documentation for conservation issues at a unique natural heritage site.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
In liquid-liquid dispersion systems, the dynamic change of the interfacial properties between the two immiscible liquids plays an important role in both the emulsification process and emulsion stabilization. In this paper, experimentally measured dynamic interfacial tensions of 1-chlorobutane in the aqueous solutions of various random copolymers of polyvinyl acetate and polyvinyl alcohol (PVAA) are presented. Theoretical analyses on these results suggest that the adsorption of the polymer molecules is controlled neither by the bulk diffusion process nor the activation energy barrier for the adsorption but the conformation of polymer molecules. Based on the concept of critical concentration of condensation for polymer adsorption, as well as the observation that the rate at which the dynamic interfacial tension changes does not correlate to the PVAA's ability to stabilize a single drop, it is postulated that the main stabilization mechanism for the PVAAs is by steric hindrance, not the Gibbs-Marangoni effect offered by the small molecule surfactants.
Resumo:
The aim of the study presented was to implement a process model to simulate the dynamic behaviour of a pilot-scale process for anaerobic two-stage digestion of sewage sludge. The model implemented was initiated to support experimental investigations of the anaerobic two-stage digestion process. The model concept implemented in the simulation software package MATLAB(TM)/Simulink(R) is a derivative of the IWA Anaerobic Digestion Model No.1 (ADM1) that has been developed by the IWA task group for mathematical modelling of anaerobic processes. In the present study the original model concept has been adapted and applied to replicate a two-stage digestion process. Testing procedures, including balance checks and 'benchmarking' tests were carried out to verify the accuracy of the implementation. These combined measures ensured a faultless model implementation without numerical inconsistencies. Parameters for both, the thermophilic and the mesophilic process stage, have been estimated successfully using data from lab-scale experiments described in literature. Due to the high number of parameters in the structured model, it was necessary to develop a customised procedure that limited the range of parameters to be estimated. The accuracy of the optimised parameter sets has been assessed against experimental data from pilot-scale experiments. Under these conditions, the model predicted reasonably well the dynamic behaviour of a two-stage digestion process in pilot scale. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Cassava rhizome was catalytically pyrolysed at 500 °C using analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) in order to investigate the effect of catalysts on bio-oil properties. The catalysts studied were zeolite ZSM-5, two aluminosilicate mesoporous materials Al-MCM-41 and Al-MSU-F, and a proprietary commercial catalyst alumina-stabilised ceria MI-575. The influence of catalysts on pyrolysis products was observed through the yields of aromatic hydrocarbons, phenols, lignin-derived compounds, carbonyls, methanol and acetic acid. Results showed that all the catalysts produced aromatic hydrocarbons and reduced oxygenated lignin derivatives, thus indicating an improvement of bio-oil heating value and viscosity. Among the catalysts, ZSM-5 was the most active to all the changes in pyrolysis products. In addition, all the catalysts with the exception of MI-575 enhanced the formation of acetic acid. This is clearly a disadvantage with respect to the level of pH in the liquid bio-fuel.
Resumo:
The pyrolysis of a freely moving cellulosic particle inside a 41.7mgs -1 source continuously fed fluid bed reactor subjected to convective heat transfer is modelled. The Lagrangian approach is adopted for the particle tracking inside the reactor, while the flow of the inert gas is treated with the standard Eulerian method for gases. The model incorporates the thermal degradation of cellulose to char with simultaneous evolution of gases and vapours from discrete cellulosic particles. The reaction kinetics is represented according to the Broido–Shafizadeh scheme. The convective heat transfer to the surface of the particle is solved by two means, namely the Ranz–Marshall correlation and the limit case of infinitely fast external heat transfer rates. The results from both approaches are compared and discussed. The effect of the different heat transfer rates on the discrete phase trajectory is also considered.
Resumo:
The fluid–particle interaction inside a 150 g/h fluidised bed reactor is modelled. The biomass particle is injected into the fluidised bed and the heat, momentum and mass transport from the fluidising gas and fluidised sand is modelled. The Eulerian approach is used to model the bubbling behaviour of the sand, which is treated as a continuum. Heat transfer from the bubbling bed to the discrete biomass particle, as well as biomass reaction kinetics are modelled according to the literature. The particle motion inside the reactor is computed using drag laws, dependent on the local volume fraction of each phase. FLUENT 6.2 has been used as the modelling framework of the simulations with the whole pyrolysis model incorporated in the form of user-defined function (UDF). The study completes the fast pyrolysis modelling in bubbling fluidised bed reactors.
Resumo:
The fluid–particle interaction inside a 150 g/h fluidised bed reactor is modelled. The biomass particle is injected into the fluidised bed and the momentum transport from the fluidising gas and fluidised sand is modelled. The Eulerian approach is used to model the bubbling behaviour of the sand, which is treated as a continuum. The particle motion inside the reactor is computed using drag laws, dependent on the local volume fraction of each phase, according to the literature. FLUENT 6.2 has been used as the modelling framework of the simulations with a completely revised drag model, in the form of user defined function (UDF), to calculate the forces exerted on the particle as well as its velocity components. 2-D and 3-D simulations are tested and compared. The study is the first part of a complete pyrolysis model in fluidised bed reactors.
Resumo:
The fluid–particle interaction and the impact of shrinkage on pyrolysis of biomass inside a 150 g/h fluidised bed reactor is modelled. Two 500 View the MathML sourcem in diameter biomass particles are injected into the fluidised bed with different shrinkage conditions. The two different conditions consist of (1) shrinkage equal to the volume left by the solid devolatilization, and (2) shrinkage parameters equal to approximately half of particle volume. The effect of shrinkage is analysed in terms of heat and momentum transfer as well as product yields, pyrolysis time and particle size considering spherical geometries. The Eulerian approach is used to model the bubbling behaviour of the sand, which is treated as a continuum. Heat transfer from the bubbling bed to the discrete biomass particle, as well as biomass reaction kinetics are modelled according to the literature. The particle motion inside the reactor is computed using drag laws, dependent on the local volume fraction of each phase. FLUENT 6.2 has been used as the modelling framework of the simulations with the whole pyrolysis model incorporated in the form of user defined function (UDF).
Resumo:
There is considerable concern over the increased effect of fossil fuel usage on the environment and this concern has resulted in an effort to find alternative, environmentally friendly energy sources. Biomass is an available alternative resource which may be converted by flash pyrolysis to produce a crude liquid product that can be used directly to substitute for conventional fossil fuels or upgraded to a higher quality fuel. Both the crude and upgraded products may be utilised for power generation. A computer program, BLUNT, has been developed to model the flash pyrolysis of biomass with subsequent upgrading, refining or power production. The program assesses and compares the economic and technical opportunities for biomass thermochemical conversion on the same basis. BLUNT works by building up a selected processing route from a number of process steps through which the material passes sequentially. Each process step has a step model that calculates the mass and energy balances, the utilities usage and the capital cost for that step of the process. The results of the step models are combined to determine the performance of the whole conversion route. Sample results from the modelling are presented in this thesis. Due to the large number of possible combinations of feeds, conversion processes, products and sensitivity analyses a complete set of results is impractical to present in a single publication. Variation of the production costs for the available products have been illustrated based on the cost of a wood feedstock. The effect of selected macroeconomic factors on the production costs of bio-diesel and gasoline are also given.
Resumo:
Agricultural residues from Thailand, namely stalk and rhizome of cassava plants, were employed as raw materials for bio-oil production via fast pyrolysis technology. There were two main objectives of this project. The first one was to determine the optimum pyrolysis temperature for maximising the organics yield and to investigate the properties of the bio-oils produced. To achieve this objective, pyrolysis experiments were conducted using a bench-scale (150 g/h) reactor system, followed by bio-oil analysis. It was found that the reactor bed temperature that could give the highest organics yield for both materials was 490±15ºC. At all temperatures studied, the rhizome gave about 2-4% higher organics yields than the stalk. The bio-oil derived from the rhizome had lower oxygen content, higher calorific value and better stability, thus indicating better quality than that produced from the stalk. The second objective was to improve the bio-oil properties in terms of heating value, viscosity and storage stability by the incorporation of catalyst into the pyrolysis process. Catalytic pyrolysis was initially performed in a micro-scale reactor to screen a large number of catalysts. Subsequently, seven catalysts were selected for experiments with larger-scale (150 g/h) pyrolysis unit. The catalysts were zeolite and related materials (ZSM-5, Al-MCM-41 and Al-MSU-F), commercial catalysts (Criterion-534 and MI-575), copper chromite and ash. Additionally, the combination of two catalysts in series was investigated. These were Criterion-534/ZSM-5 and Al-MSU-F/ZSM-5. The results showed that all catalysts could improve the bio-oils properties as they enhanced cracking and deoxygenation reactions and in some cases such as ZSM-5, Criterion-534 and Criterion-534/ZSM-5, valuable chemicals like hydrocarbons and light phenols were produced. The highest concentration of these compounds was obtained with Criterion-534/ZSM-5.
Resumo:
IEEE 802.11 standard has achieved huge success in the past decade and is still under development to provide higher physical data rate and better quality of service (QoS). An important problem for the development and optimization of IEEE 802.11 networks is the modeling of the MAC layer channel access protocol. Although there are already many theoretic analysis for the 802.11 MAC protocol in the literature, most of the models focus on the saturated traffic and assume infinite buffer at the MAC layer. In this paper we develop a unified analytical model for IEEE 802.11 MAC protocol in ad hoc networks. The impacts of channel access parameters, traffic rate and buffer size at the MAC layer are modeled with the assistance of a generalized Markov chain and an M/G/1/K queue model. The performance of throughput, packet delivery delay and dropping probability can be achieved. Extensive simulations show the analytical model is highly accurate. From the analytical model it is shown that for practical buffer configuration (e.g. buffer size larger than one), we can maximize the total throughput and reduce the packet blocking probability (due to limited buffer size) and the average queuing delay to zero by effectively controlling the offered load. The average MAC layer service delay as well as its standard deviation, is also much lower than that in saturated conditions and has an upper bound. It is also observed that the optimal load is very close to the maximum achievable throughput regardless of the number of stations or buffer size. Moreover, the model is scalable for performance analysis of 802.11e in unsaturated conditions and 802.11 ad hoc networks with heterogenous traffic flows. © 2012 KSI.
Resumo:
IEEE 802.15.4 standard has been recently developed for low power wireless personal area networks. It can find many applications for smart grid, such as data collection, monitoring and control functions. The performance of 802.15.4 networks has been widely studied in the literature. However the main focus has been on the modeling throughput performance with frame collisions. In this paper we propose an analytic model which can model the impact of frame collisions as well as frame corruptions due to channel bit errors. With this model the frame length can be carefully selected to improve system performance. The analytic model can also be used to study the 802.15.4 networks with interference from other co-located networks, such as IEEE 802.11 and Bluetooth networks. © 2011 Springer-Verlag.
Resumo:
Purpose: The purpose of this paper is to investigate enterprise resource planning (ERP) systems development and emerging practices in the management of enterprises (i.e. parts of companies working with parts of other companies to deliver a complex product and/or service) and identify any apparent correlations. Suitable a priori contingency frameworks are then used and extended to explain apparent correlations. Discussion is given to provide guidance for researchers and practitioners to deliver better strategic, structural and operational competitive advantage through this approach; coined here as the "enterprization of operations". Design/methodology/approach: Theoretical induction uses a new empirical longitudinal case study from Zoomlion (a Chinese manufacturing company) built using an adapted form of template analysis to produce a new contingency framework. Findings: Three main types of enterprises and the three main types of ERP systems are defined and correlations between them are explained. Two relevant a priori frameworks are used to induct a new contingency model to support the enterprization of operations; known as the dynamic enterprise reference grid for ERP (DERG-ERP). Research limitations/implications: The findings are based on one longitudinal case study. Further case studies are currently being conducted in the UK and China. Practical implications: The new contingency model, the DERG-ERP, serves as a guide for ERP vendors, information systems management and operations managers hoping to grow and sustain their competitive advantage with respect to effective enterprise strategy, enterprise structure and ERP systems. Originality/value: This research explains how ERP systems and the effective management of enterprises should develop in order to sustain competitive advantage with respect to enterprise strategy, enterprise structure and ERP systems use. © Emerald Group Publishing Limited.